001     827862
005     20210129225938.0
024 7 _ |a 2128/13895
|2 Handle
037 _ _ |a FZJ-2017-01950
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Jiang, Xiaoqian
|0 P:(DE-Juel1)156268
|b 0
245 _ _ |a Colloid-bound and dissolved phosphorus species in topsoil water extracts along a grassland transect from Cambisol to Stagnosol
260 _ _ |c 2017
336 7 _ |a MISC
|2 BibTeX
336 7 _ |a Dataset
|b dataset
|m dataset
|0 PUB:(DE-HGF)32
|s 1500555996_11989
|2 PUB:(DE-HGF)
336 7 _ |a Chart or Table
|0 26
|2 EndNote
336 7 _ |a Dataset
|2 DataCite
336 7 _ |a DATA_SET
|2 ORCID
336 7 _ |a ResearchData
|2 DINI
500 _ _ |a Forschungsdaten zum gleichnamigen Journalartikel
520 _ _ |a Phosphorus (P) species in colloidal and “dissolved” soil fractions may have different distributions. To understand which P species are potentially involved, we obtained water extracts from the surface soils of a gradient 5 from Cambisol, Stagnic Cambisol to Stagnosol from temperate grassland in Germany. These were filtered to <450 nm, and divided into three procedurally defined fractions: small-sized colloids (20–450 nm), nano-sized colloids (1–20 nm), and “dissolved P” (<1 nm), using asymmetric flow 10 field-flow fractionation (AF4), as well as filtration for solution 31P-nuclear magnetic resonance (NMR) spectroscopy. The total P of soil water extracts increased in the order CambisolStagnic Cambisol>Stagnosol. Across all 20 soil types, elevated proportions of inositol hexakisphosphate (IHP) species (e.g., myo-, scyllo- and D-chiro-IHP) were associated with soil mineral particles (i.e., bulk soil and small-sized soil colloids), whereas other orthophosphate monoesters and phosphonates were found in the “dissolved” 25 P fraction. We conclude that P species composition varies among colloidal and “dissolved” soil fractions after characterization using advanced techniques, i.e., AF4 and NMR. Furthermore, stagnic properties affect P speciation and availability by potentially releasing dissolved inorganic and esterbound P forms as well as nano-sized organic matter–Fe/Al–P 30 colloids.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
700 1 _ |a Klumpp, Erwin
|0 P:(DE-Juel1)129484
|b 1
|e Corresponding author
|u fzj
700 1 _ |a Cade-Menun, Barbara J.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Bol, Roland
|0 P:(DE-Juel1)145865
|b 3
|u fzj
700 1 _ |a Nischwitz, Volker
|0 P:(DE-Juel1)157638
|b 4
|u fzj
700 1 _ |a Willbold, Sabine
|0 P:(DE-Juel1)133857
|b 5
|u fzj
700 1 _ |a Vereecken, Harry
|0 P:(DE-Juel1)129549
|b 6
|u fzj
700 1 _ |a Bauke, Sara L.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Amelung, Wulf
|0 P:(DE-Juel1)129427
|b 8
|u fzj
787 0 _ |a Jiang, X.; Klumpp, E.; Cade-Menun, B. J.; Bol, R.; Nischwitz, V.; Willbold, S.; Vereecken, H.; Bauke, S. L.; Amelung, W.
|0 FZJ-2017-02115
|t Colloid-bound and dissolved phosphorus species in topsoil water extracts along a grassland transect from Cambisol to Stagnosol
|i IsMemberOf
|d Biogeosciences, Copernicus, 2017
856 4 _ |u https://juser.fz-juelich.de/record/827862/files/Rolles%20paper%20DOI.zip
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/827862/files/Data%20set%20of%20the%20paper.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/827862/files/Data%20set%20of%20the%20paper.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/827862/files/Data%20set%20of%20the%20paper.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/827862/files/Data%20set%20of%20the%20paper.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/827862/files/Data%20set%20of%20the%20paper.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/827862/files/Data%20set%20of%20the%20paper.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:827862
|p openaire
|p open_access
|p driver
|p VDB
|q dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)156268
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129484
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)145865
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)157638
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)133857
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129549
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)129427
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2017
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
920 1 _ |0 I:(DE-Juel1)ZEA-3-20090406
|k ZEA-3
|l Analytik
|x 1
980 _ _ |a dataset
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a I:(DE-Juel1)ZEA-3-20090406
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21