001     827877
005     20250701125849.0
024 7 _ |a 10.1103/PhysRevB.95.075310
|2 doi
024 7 _ |a 0163-1829
|2 ISSN
024 7 _ |a 0556-2805
|2 ISSN
024 7 _ |a 1094-1622
|2 ISSN
024 7 _ |a 1095-3795
|2 ISSN
024 7 _ |a 1098-0121
|2 ISSN
024 7 _ |a 1550-235X
|2 ISSN
024 7 _ |a 2469-9950
|2 ISSN
024 7 _ |a 2469-9969
|2 ISSN
024 7 _ |a 2128/13896
|2 Handle
024 7 _ |a WOS:000395989400010
|2 WOS
024 7 _ |a altmetric:21832838
|2 altmetric
037 _ _ |a FZJ-2017-01960
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Just, Sven
|0 P:(DE-Juel1)162164
|b 0
245 _ _ |a Surface conductivity of Si(100) and Ge(100) surfaces determined from four-point transport measurements using an analytical N -layer conductance model
260 _ _ |a Woodbury, NY
|c 2017
|b American Physical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1488288665_6800
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a An analytical N-layer model for charge transport close to a surface is derived from the solution of Poisson's equation and used to describe distance-dependent electrical four-point measurements on the microscale. As the N-layer model comprises a surface channel, multiple intermediate layers, and a semi-infinite bulk, it can be applied to semiconductors in combination with a calculation of the near-surface band bending to model very precisely the measured four-point resistance on the surface of a specific sample and to extract a value for the surface conductivity. For describing four-point measurements on sample geometries with mixed 2D-3D conduction channels, often a very simple parallel-circuit model has so far been used in the literature, but the application of this model is limited, as there are already significant deviations, when it is compared to the lowest possible case of the N-layer model, i.e., the three-layer model. Furthermore, the N-layer model is applied to published distance-dependent four-point resistance measurements obtained with a multitip scanning tunneling microscope (STM) on germanium(100) and silicon(100) with different bulk doping concentrations resulting in the determination of values for the surface conductivities of these materials.
536 _ _ |a 141 - Controlling Electron Charge-Based Phenomena (POF3-141)
|0 G:(DE-HGF)POF3-141
|c POF3-141
|f POF III
|x 0
536 _ _ |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|0 G:(DE-HGF)POF3-521
|c POF3-521
|f POF III
|x 1
542 _ _ |i 2017-02-27
|2 Crossref
|u http://link.aps.org/licenses/aps-default-license
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Soltner, Helmut
|0 P:(DE-Juel1)133754
|b 1
700 1 _ |a Korte, Stefan
|0 P:(DE-Juel1)138943
|b 2
700 1 _ |a Cherepanov, Vasily
|0 P:(DE-Juel1)128762
|b 3
700 1 _ |a Voigtländer, Bert
|0 P:(DE-Juel1)128794
|b 4
|e Corresponding author
773 1 8 |a 10.1103/physrevb.95.075310
|b American Physical Society (APS)
|d 2017-02-27
|n 7
|p 075310
|3 journal-article
|2 Crossref
|t Physical Review B
|v 95
|y 2017
|x 2469-9950
773 _ _ |a 10.1103/PhysRevB.95.075310
|g Vol. 95, no. 7, p. 075310
|0 PERI:(DE-600)2844160-6
|n 7
|p 075310
|t Physical review / B
|v 95
|y 2017
|x 2469-9950
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/827877/files/PhysRevB.95.075310-1.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/827877/files/PhysRevB.95.075310-1.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/827877/files/PhysRevB.95.075310-1.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/827877/files/PhysRevB.95.075310-1.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/827877/files/PhysRevB.95.075310-1.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/827877/files/PhysRevB.95.075310-1.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:827877
|p openaire
|p driver
|p open_access
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)162164
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)133754
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)128762
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)128794
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-141
|2 G:(DE-HGF)POF3-100
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-521
|2 G:(DE-HGF)POF3-500
|v Controlling Electron Charge-Based Phenomena
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV B : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-3-20110106
|k PGI-3
|l Funktionale Nanostrukturen an Oberflächen
|x 0
920 1 _ |0 I:(DE-Juel1)ZEA-1-20090406
|k ZEA-1
|l Zentralinstitut für Technologie
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-3-20110106
980 _ _ |a I:(DE-Juel1)ZEA-1-20090406
980 _ _ |a I:(DE-82)080009_20140620
981 _ _ |a I:(DE-Juel1)ITE-20250108
999 C 5 |a 10.1103/PhysRevLett.68.1192
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0039-6028(96)00052-0
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/S0039-6028(96)01470-7
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.79.035318
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.112.246802
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 D. K. Schroder
|y 2006
|2 Crossref
|t Semiconductor Material and Device Characterization
|o D. K. Schroder Semiconductor Material and Device Characterization 2006
999 C 5 |a 10.1063/1.4793376
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.2969769
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.4773485
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/acs.nanolett.5b04425
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.92.035309
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.susc.2008.02.041
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.115.066801
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1149/1.2411781
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0038-1101(69)90092-6
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0038-1101(65)90047-X
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0038-1101(77)90193-9
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1149/1.2129311
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1149/1.1393940
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1149/1.1890766
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.97.206803
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.68.113303
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.65.115424
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.4891858
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.3068497
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.2410241
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.78.075203
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.33.8855
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.45.1112
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.4936079
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 J. D. Jackson
|y 1999
|2 Crossref
|t Classical Electrodynamics
|o J. D. Jackson Classical Electrodynamics 1999
999 C 5 |a 10.1016/0038-1101(78)90291-5
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/978-3-319-10756-1
|1 H. Lüth
|2 Crossref
|9 -- missing cx lookup --
|y 2015


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21