000008279 001__ 8279 000008279 005__ 20180208203502.0 000008279 0247_ $$2DOI$$a10.1080/01411590903341155 000008279 0247_ $$2WOS$$aWOS:000272083300002 000008279 037__ $$aPreJuSER-8279 000008279 041__ $$aeng 000008279 082__ $$a540 000008279 084__ $$2WoS$$aCrystallography 000008279 084__ $$2WoS$$aPhysics, Condensed Matter 000008279 1001_ $$0P:(DE-HGF)0$$aMolak, A.$$b0 000008279 245__ $$aNano-scale chemical and structural segregation induced in surface layer of NaNbO3 crystals with thermal treatment at oxidising conditions studied by XPS, AFM, XRD, and electric properties tests 000008279 260__ $$aLondon [u.a.]$$bTaylor & Francis$$c2009 000008279 300__ $$a662 - 682 000008279 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article 000008279 3367_ $$2DataCite$$aOutput Types/Journal article 000008279 3367_ $$00$$2EndNote$$aJournal Article 000008279 3367_ $$2BibTeX$$aARTICLE 000008279 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000008279 3367_ $$2DRIVER$$aarticle 000008279 440_0 $$08102$$aPhase Transitions$$v82$$x0141-1594$$y9 000008279 500__ $$aRecord converted from VDB: 12.11.2012 000008279 520__ $$aThe process of ionic segregation in the surface layer induced by the thermal treatment of the NaNbO3 crystal was studied. The study of the as grown crystal and the crystal heated at 970 K in ambient air was carried out for comparison. The changes in the concentration of the elements within the surface layer were determined using XPS measurements. The AFM technique was applied to determine the surface morphology related to nano-scale transformation. The possibility of appearance of the Ruddlesden-Popper phases was detected by the XRD test. The change in the features of the electric permittivity, the loss tangent, and the electric conductivity was ascribed to the marked participation of the chemically modified surface layer in the measured effective electrical properties. 000008279 536__ $$0G:(DE-Juel1)FUEK412$$2G:(DE-HGF)$$aGrundlagen für zukünftige Informationstechnologien$$cP42$$x0 000008279 588__ $$aDataset connected to Web of Science 000008279 650_7 $$2WoSType$$aJ 000008279 65320 $$2Author$$aAtomic force microscopy 000008279 65320 $$2Author$$aSurface layer 000008279 65320 $$2Author$$aElectric permittivity and conduction 000008279 65320 $$2Author$$aSodium niobate 000008279 65320 $$2Author$$aXPS 000008279 65320 $$2Author$$aXRD 000008279 7001_ $$0P:(DE-HGF)0$$aPawelczyk, M.$$b1 000008279 7001_ $$0P:(DE-Juel1)VDB59475$$aKubacki, J.$$b2$$uFZJ 000008279 7001_ $$0P:(DE-Juel1)VDB2799$$aSzot, K.$$b3$$uFZJ 000008279 773__ $$0PERI:(DE-600)2022931-8$$a10.1080/01411590903341155$$gVol. 82, p. 662 - 682$$p662 - 682$$q82<662 - 682$$tPhase transitions$$v82$$x0141-1594$$y2009 000008279 8567_ $$uhttp://dx.doi.org/10.1080/01411590903341155 000008279 909CO $$ooai:juser.fz-juelich.de:8279$$pVDB 000008279 9131_ $$0G:(DE-Juel1)FUEK412$$bSchlüsseltechnologien$$kP42$$lGrundlagen für zukünftige Informationstechnologien (FIT)$$vGrundlagen für zukünftige Informationstechnologien$$x0 000008279 9141_ $$y2009 000008279 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed 000008279 9201_ $$0I:(DE-Juel1)VDB786$$d31.12.2010$$gIFF$$kIFF-6$$lElektronische Materialien$$x0 000008279 9201_ $$0I:(DE-82)080009_20140620$$gJARA$$kJARA-FIT$$lJülich-Aachen Research Alliance - Fundamentals of Future Information Technology$$x1 000008279 970__ $$aVDB:(DE-Juel1)117197 000008279 980__ $$aVDB 000008279 980__ $$aConvertedRecord 000008279 980__ $$ajournal 000008279 980__ $$aI:(DE-Juel1)PGI-7-20110106 000008279 980__ $$aI:(DE-82)080009_20140620 000008279 980__ $$aUNRESTRICTED 000008279 981__ $$aI:(DE-Juel1)PGI-7-20110106 000008279 981__ $$aI:(DE-Juel1)VDB881