001     8279
005     20180208203502.0
024 7 _ |2 DOI
|a 10.1080/01411590903341155
024 7 _ |2 WOS
|a WOS:000272083300002
037 _ _ |a PreJuSER-8279
041 _ _ |a eng
082 _ _ |a 540
084 _ _ |2 WoS
|a Crystallography
084 _ _ |2 WoS
|a Physics, Condensed Matter
100 1 _ |a Molak, A.
|b 0
|0 P:(DE-HGF)0
245 _ _ |a Nano-scale chemical and structural segregation induced in surface layer of NaNbO3 crystals with thermal treatment at oxidising conditions studied by XPS, AFM, XRD, and electric properties tests
260 _ _ |a London [u.a.]
|b Taylor & Francis
|c 2009
300 _ _ |a 662 - 682
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Phase Transitions
|x 0141-1594
|0 8102
|y 9
|v 82
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a The process of ionic segregation in the surface layer induced by the thermal treatment of the NaNbO3 crystal was studied. The study of the as grown crystal and the crystal heated at 970 K in ambient air was carried out for comparison. The changes in the concentration of the elements within the surface layer were determined using XPS measurements. The AFM technique was applied to determine the surface morphology related to nano-scale transformation. The possibility of appearance of the Ruddlesden-Popper phases was detected by the XRD test. The change in the features of the electric permittivity, the loss tangent, and the electric conductivity was ascribed to the marked participation of the chemically modified surface layer in the measured effective electrical properties.
536 _ _ |a Grundlagen für zukünftige Informationstechnologien
|c P42
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK412
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a Atomic force microscopy
653 2 0 |2 Author
|a Surface layer
653 2 0 |2 Author
|a Electric permittivity and conduction
653 2 0 |2 Author
|a Sodium niobate
653 2 0 |2 Author
|a XPS
653 2 0 |2 Author
|a XRD
700 1 _ |a Pawelczyk, M.
|b 1
|0 P:(DE-HGF)0
700 1 _ |a Kubacki, J.
|b 2
|u FZJ
|0 P:(DE-Juel1)VDB59475
700 1 _ |a Szot, K.
|b 3
|u FZJ
|0 P:(DE-Juel1)VDB2799
773 _ _ |a 10.1080/01411590903341155
|g Vol. 82, p. 662 - 682
|p 662 - 682
|q 82<662 - 682
|0 PERI:(DE-600)2022931-8
|t Phase transitions
|v 82
|y 2009
|x 0141-1594
856 7 _ |u http://dx.doi.org/10.1080/01411590903341155
909 C O |o oai:juser.fz-juelich.de:8279
|p VDB
913 1 _ |k P42
|v Grundlagen für zukünftige Informationstechnologien
|l Grundlagen für zukünftige Informationstechnologien (FIT)
|b Schlüsseltechnologien
|0 G:(DE-Juel1)FUEK412
|x 0
914 1 _ |y 2009
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |d 31.12.2010
|g IFF
|k IFF-6
|l Elektronische Materialien
|0 I:(DE-Juel1)VDB786
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology
|g JARA
|x 1
970 _ _ |a VDB:(DE-Juel1)117197
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-7-20110106
981 _ _ |a I:(DE-Juel1)VDB881


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21