000827935 001__ 827935
000827935 005__ 20250314084116.0
000827935 020__ $$a978-3-319-53861-7 (print)
000827935 020__ $$a978-3-319-53862-4 (electronic)
000827935 0247_ $$2doi$$a10.1007/978-3-319-53862-4_16
000827935 0247_ $$2ISSN$$a0302-9743
000827935 0247_ $$2ISSN$$a1611-3349
000827935 0247_ $$2Handle$$a2128/13902
000827935 037__ $$aFZJ-2017-01976
000827935 082__ $$a004
000827935 1001_ $$0P:(DE-HGF)0$$aIliev, Hristo$$b0$$eCorresponding author
000827935 1112_ $$aFirst JARA-HPC Symposium 2016$$cAachen$$d2016-10-04 - 2016-10-05$$gJHPCS'16$$wGermany
000827935 245__ $$aPerformance Optimization of Parallel Applications in Diverse On-Demand Development Teams
000827935 260__ $$aCham$$bSpringer International Publishing$$c2017
000827935 29510 $$aHigh-Performance Scientific Computing / Di Napoli, Edoardo (Editor)   ; Cham : Springer International Publishing, 2017, Chapter 16 ; ISSN: 0302-9743=1611-3349 ; ISBN: 978-3-319-53861-7=978-3-319-53862-4 ; doi:10.1007/978-3-319-53862-4
000827935 300__ $$a187 - 199
000827935 3367_ $$2ORCID$$aCONFERENCE_PAPER
000827935 3367_ $$033$$2EndNote$$aConference Paper
000827935 3367_ $$2BibTeX$$aINPROCEEDINGS
000827935 3367_ $$2DRIVER$$aconferenceObject
000827935 3367_ $$2DataCite$$aOutput Types/Conference Paper
000827935 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1488546423_17005
000827935 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$mcontb
000827935 4900_ $$aLecture Notes in Computer Science$$v10164
000827935 520__ $$aCurrent supercomputing platforms and scientific application codes have grown rapidly in complexity over the past years. Multi-scale, multi-domain simulations on one hand and deep hierarchies in large-scale computing platforms on the other make it exceedingly harder to map the former onto the latter and fully exploit the available computational power. The complexity of the software and hardware components involved calls for in-depth expertise that can only be met by diversity in the application development teams. With its model of simulation labs and cross-sectional groups, JARA-HPC enables such diverse teams to form on demand to solve concrete development problems. This work showcases the effectiveness of this model with two application case studies involving the JARA-HPC cross-sectional group “Parallel Efficiency” and simulation labs and domain-specific development teams. For one application, we show the results of a completed optimization and the estimated financial impact of the combined efforts. For the other application, we present results from an ongoing engagement, where we show how an on-demand team investigates the behavior of dynamic load balancing schemes for an MD particle simulation, leading to a better overall understanding of the application and revealing targets for further investigation.
000827935 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000827935 536__ $$0G:(DE-Juel-1)ATMLPP$$aATMLPP - ATML Parallel Performance (ATMLPP)$$cATMLPP$$x1
000827935 588__ $$aDataset connected to CrossRef Book Series
000827935 7001_ $$0P:(DE-Juel1)168253$$aHermanns, Marc-André$$b1
000827935 7001_ $$0P:(DE-Juel1)168541$$aGöbbert, Jens Henrik$$b2
000827935 7001_ $$0P:(DE-Juel1)132124$$aHalver, René$$b3
000827935 7001_ $$0P:(DE-HGF)0$$aTerboven, Christian$$b4
000827935 7001_ $$0P:(DE-Juel1)132199$$aMohr, Bernd$$b5
000827935 7001_ $$0P:(DE-HGF)0$$aMüller, Matthias S.$$b6
000827935 773__ $$a10.1007/978-3-319-53862-4_16
000827935 8564_ $$uhttps://juser.fz-juelich.de/record/827935/files/JHPCS_2016_paper_22.pdf$$yOpenAccess
000827935 8564_ $$uhttps://juser.fz-juelich.de/record/827935/files/JHPCS_2016_paper_22.gif?subformat=icon$$xicon$$yOpenAccess
000827935 8564_ $$uhttps://juser.fz-juelich.de/record/827935/files/JHPCS_2016_paper_22.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000827935 8564_ $$uhttps://juser.fz-juelich.de/record/827935/files/JHPCS_2016_paper_22.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000827935 8564_ $$uhttps://juser.fz-juelich.de/record/827935/files/JHPCS_2016_paper_22.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000827935 8564_ $$uhttps://juser.fz-juelich.de/record/827935/files/JHPCS_2016_paper_22.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000827935 909CO $$ooai:juser.fz-juelich.de:827935$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000827935 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168253$$aForschungszentrum Jülich$$b1$$kFZJ
000827935 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168541$$aForschungszentrum Jülich$$b2$$kFZJ
000827935 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132124$$aForschungszentrum Jülich$$b3$$kFZJ
000827935 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132199$$aForschungszentrum Jülich$$b5$$kFZJ
000827935 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000827935 9141_ $$y2017
000827935 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000827935 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000827935 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000827935 920__ $$lyes
000827935 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x0
000827935 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x1
000827935 980__ $$acontrib
000827935 980__ $$aVDB
000827935 980__ $$aUNRESTRICTED
000827935 980__ $$acontb
000827935 980__ $$aI:(DE-82)080012_20140620
000827935 980__ $$aI:(DE-Juel1)JSC-20090406
000827935 9801_ $$aFullTexts