000827951 001__ 827951
000827951 005__ 20210129225944.0
000827951 0247_ $$2doi$$a10.1039/C6RA27829A
000827951 0247_ $$2Handle$$a2128/13898
000827951 0247_ $$2WOS$$aWOS:000395873500047
000827951 0247_ $$2altmetric$$aaltmetric:21832846
000827951 037__ $$aFZJ-2017-01983
000827951 082__ $$a540
000827951 1001_ $$0P:(DE-HGF)0$$aFasbender, Stefan$$b0
000827951 245__ $$aUptake dynamics of graphene quantum dots into primary human blood cells following in vitro exposure
000827951 260__ $$aLondon$$bRSC Publishing$$c2017
000827951 3367_ $$2DRIVER$$aarticle
000827951 3367_ $$2DataCite$$aOutput Types/Journal article
000827951 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1488542719_17007
000827951 3367_ $$2BibTeX$$aARTICLE
000827951 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000827951 3367_ $$00$$2EndNote$$aJournal Article
000827951 520__ $$aHuman leukocytes obtained from samples of leukapheresis products of three healthy donors stimulated by granulocyte colony stimulating factor (G-CSF) were exposed to graphene quantum dots. A time- and concentration dependent uptake was observed with a significantly greater uptake into monocytes and granulocytes in comparison to lymphocytes, suggesting a better incorporation ability of cells with phagocytotic properties. The uptake rates also correlate with the cell membrane area. Looking at the different lymphoid subsets a greater uptake was found into CD19+ B-, CD56+ natural killer cells and CD34+ hematopoietic stem cells (HSC) in comparison to CD4+ T- and CD8+ T cells. Independent of the cell type studied, the observed uptake dynamics is consistent with a diffusion-driven process, which allows the determination of cell-specific membrane permeabilities for the graphene quantum dots. The toxicity of the quantum dots is relatively low resulting in a 90% viability of the entire leukocyte population after 36 hours of exposure to GQDs at a concentration of 500 μg ml−1.
000827951 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000827951 588__ $$aDataset connected to CrossRef
000827951 7001_ $$0P:(DE-HGF)0$$aAllani, Sonja$$b1
000827951 7001_ $$0P:(DE-HGF)0$$aWimmenauer, Christian$$b2
000827951 7001_ $$0P:(DE-HGF)0$$aCadeddu, Ron-Patrick$$b3
000827951 7001_ $$0P:(DE-HGF)0$$aRaba, Katharina$$b4
000827951 7001_ $$0P:(DE-HGF)0$$aFischer, Johannes C.$$b5
000827951 7001_ $$0P:(DE-HGF)0$$aBulat, Bekir$$b6
000827951 7001_ $$0P:(DE-Juel1)130811$$aLuysberg, Martina$$b7
000827951 7001_ $$0P:(DE-HGF)0$$aSeidel, Claus A. M.$$b8
000827951 7001_ $$0P:(DE-HGF)0$$aHeinzel, Thomas$$b9
000827951 7001_ $$0P:(DE-HGF)0$$aHaas, Rainer$$b10$$eCorresponding author
000827951 773__ $$0PERI:(DE-600)2623224-8$$a10.1039/C6RA27829A$$gVol. 7, no. 20, p. 12208 - 12216$$n20$$p12208 - 12216$$tRSC Advances$$v7$$x2046-2069$$y2017
000827951 8564_ $$uhttps://juser.fz-juelich.de/record/827951/files/c6ra27829a.pdf$$yOpenAccess
000827951 8564_ $$uhttps://juser.fz-juelich.de/record/827951/files/c6ra27829a.gif?subformat=icon$$xicon$$yOpenAccess
000827951 8564_ $$uhttps://juser.fz-juelich.de/record/827951/files/c6ra27829a.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000827951 8564_ $$uhttps://juser.fz-juelich.de/record/827951/files/c6ra27829a.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000827951 8564_ $$uhttps://juser.fz-juelich.de/record/827951/files/c6ra27829a.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000827951 8564_ $$uhttps://juser.fz-juelich.de/record/827951/files/c6ra27829a.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000827951 909CO $$ooai:juser.fz-juelich.de:827951$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000827951 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130811$$aForschungszentrum Jülich$$b7$$kFZJ
000827951 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000827951 9141_ $$y2017
000827951 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000827951 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000827951 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bRSC ADV : 2015
000827951 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000827951 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000827951 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000827951 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000827951 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000827951 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000827951 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000827951 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000827951 920__ $$lyes
000827951 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000827951 980__ $$ajournal
000827951 980__ $$aVDB
000827951 980__ $$aUNRESTRICTED
000827951 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000827951 9801_ $$aFullTexts