001     827958
005     20210129225945.0
020 _ _ |a 978-3-319-53861-7
020 _ _ |a 978-3-319-53862-4 (electronic)
024 7 _ |a 10.1007/978-3-319-53862-4_20
|2 doi
024 7 _ |a 0302-9743
|2 ISSN
024 7 _ |a 1611-3349
|2 ISSN
024 7 _ |a altmetric:21832845
|2 altmetric
037 _ _ |a FZJ-2017-01986
041 _ _ |a English
082 _ _ |a 004
100 1 _ |a Giesler, André
|0 P:(DE-Juel1)132116
|b 0
|e Corresponding author
|u fzj
111 2 _ |a JARA-HPC Symposium, Aachen, Germany, 4 Oct 2016 - 5 Oct 2016
|c Aachen
|d 2016-10-04 - 2016-10-05
|w Germany
245 _ _ |a UniProv: A flexible Provenance Tracking System for UNICORE
260 _ _ |a Cham
|c 2017
|b Springer International Publishing
295 1 0 |a High-Performance Scientific Computing / Di Napoli, Edoardo (Editor) ; Cham : Springer International Publishing, 2017, Chapter 20 ; ISSN: 0302-9743=1611-3349 ; ISBN: 978-3-319-53861-7=978-3-319-53862-4 ; doi:10.1007/978-3-319-53862-4
300 _ _ |a 233-242
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1488884027_24242
|2 PUB:(DE-HGF)
336 7 _ |a Contribution to a book
|0 PUB:(DE-HGF)7
|2 PUB:(DE-HGF)
|m contb
490 0 _ |a Lecture Notes in Computer Science
|v 10164
520 _ _ |a In this paper we present a flexible provenance managment system called UniProv. UniProv is an ongoing development project providing provenance tracking in scientific workflows and data management particularly in the field of neuroscience, thus allowing users to validateand reproduce tasks and results of their experiments. The primary goal is to equip the commonly used Grid middleware UNICORE and its incorporated workflow engine with the provenance capturing mechanism of UniProv. We also explain an approach for using predefined patterns to ensure compatibility with the W3C PROV Data Model and to map the provenance information properly to a neo4j graph database.
536 _ _ |a 512 - Data-Intensive Science and Federated Computing (POF3-512)
|0 G:(DE-HGF)POF3-512
|c POF3-512
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef Book Series
700 1 _ |a Czekala, Myriam
|0 P:(DE-Juel1)165674
|b 1
|u fzj
700 1 _ |a Hagemeier, Björn
|0 P:(DE-Juel1)132123
|b 2
|u fzj
700 1 _ |a Grunzke, Richard
|0 P:(DE-HGF)0
|b 3
773 _ _ |a 10.1007/978-3-319-53862-4_20
909 C O |o oai:juser.fz-juelich.de:827958
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)132116
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)165674
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)132123
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-512
|2 G:(DE-HGF)POF3-500
|v Data-Intensive Science and Federated Computing
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2017
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a contb
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21