000827983 001__ 827983
000827983 005__ 20210129225947.0
000827983 0247_ $$2doi$$a10.1016/j.envpol.2016.12.018
000827983 0247_ $$2ISSN$$a0013-9327
000827983 0247_ $$2ISSN$$a0269-7491
000827983 0247_ $$2ISSN$$a1873-6424
000827983 0247_ $$2ISSN$$a1878-2450
000827983 0247_ $$2WOS$$aWOS:000392767900050
000827983 037__ $$aFZJ-2017-02005
000827983 082__ $$a333.7
000827983 1001_ $$0P:(DE-Juel1)156270$$aZhang, Miaoyue$$b0$$eCorresponding author$$ufzj
000827983 245__ $$aCo-transport of chlordecone and sulfadiazine in the presence of functionalized multi-walled carbon nanotubes in soils
000827983 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2017
000827983 3367_ $$2DRIVER$$aarticle
000827983 3367_ $$2DataCite$$aOutput Types/Journal article
000827983 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1488884909_24240
000827983 3367_ $$2BibTeX$$aARTICLE
000827983 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000827983 3367_ $$00$$2EndNote$$aJournal Article
000827983 520__ $$aBatch and saturated soil column experiments were conducted to investigate sorption and mobility of two 14C-labeled contaminants, the hydrophobic chlordecone (CLD) and the sulfadiazine (SDZ), in the absence or presence of functionalized multi-walled carbon nanotubes (MWCNTs). The transport behaviors of CLD, SDZ, and MWCNTs were studied at environmentally relevant concentrations (0.1–10 mg L−1) and they were applied in the column studies at different times. The breakthrough curves and retention profiles were simulated using a numerical model that accounted for the advective-dispersive transport of all compounds, attachment/detachment of MWCNTs, equilibrium and kinetic sorption of contaminants, and co-transport of contaminants with MWCNTs. The experimental results indicated that the presence of mobile MWCNTs facilitated remobilization of previously deposited CLD and its co-transport into deeper soil layers, while retained MWCNTs enhanced SDZ deposition in the topsoil layers due to the increased adsorption capacity of the soil. The modeling results then demonstrated that the mobility of engineered nanoparticles (ENPs) in the environment and the high affinity and entrapment of contaminants to ENPs were the main reasons for ENP-facilitated contaminant transport. On the other hand, immobile MWCNTs had a less significant impact on the contaminant transport, even though they were still able to enhance the adsorption capacity of the soil.
000827983 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000827983 588__ $$aDataset connected to CrossRef
000827983 7001_ $$0P:(DE-Juel1)156216$$aEngelhardt, Irina$$b1
000827983 7001_ $$0P:(DE-HGF)0$$aŠimůnek, Jirka$$b2
000827983 7001_ $$0P:(DE-HGF)0$$aBradford, Scott A.$$b3
000827983 7001_ $$0P:(DE-Juel1)140411$$aKasel, Daniela$$b4
000827983 7001_ $$0P:(DE-Juel1)129438$$aBerns, Anne E.$$b5
000827983 7001_ $$0P:(DE-Juel1)129549$$aVereecken, Harry$$b6
000827983 7001_ $$0P:(DE-Juel1)129484$$aKlumpp, Erwin$$b7
000827983 773__ $$0PERI:(DE-600)2013037-5$$a10.1016/j.envpol.2016.12.018$$gVol. 221, p. 470 - 479$$p470 - 479$$tEnvironmental pollution$$v221$$x0269-7491$$y2017
000827983 909CO $$ooai:juser.fz-juelich.de:827983$$pVDB:Earth_Environment$$pVDB
000827983 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156270$$aForschungszentrum Jülich$$b0$$kFZJ
000827983 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129438$$aForschungszentrum Jülich$$b5$$kFZJ
000827983 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich$$b6$$kFZJ
000827983 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129484$$aForschungszentrum Jülich$$b7$$kFZJ
000827983 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000827983 9141_ $$y2017
000827983 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000827983 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000827983 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000827983 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000827983 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bENVIRON POLLUT : 2015
000827983 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000827983 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000827983 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000827983 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000827983 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000827983 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000827983 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000827983 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000827983 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000827983 980__ $$ajournal
000827983 980__ $$aVDB
000827983 980__ $$aI:(DE-Juel1)IBG-3-20101118
000827983 980__ $$aUNRESTRICTED