001     828002
005     20210129225951.0
024 7 _ |a 10.1109/TMAG.2016.2537794
|2 doi
024 7 _ |a 0018-9464
|2 ISSN
024 7 _ |a 1941-0069
|2 ISSN
024 7 _ |a WOS:000380359200013
|2 WOS
037 _ _ |a FZJ-2017-02024
082 _ _ |a 620
100 1 _ |a Galivarapu, Jagadish K.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Magnetic Transitions in Chemically Synthesized Nanoparticles of CoCr$_{2}$ O$_{4}$
260 _ _ |a New York, NY
|c 2016
|b IEEE
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1488885043_24237
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Bulk CoCr2O4 undergoes a transition from paramagnetic to long-range ferrimagnetic phase at Ts (94 K) to a long-range and/or short-range spiral order at Ts (~24 K), and finally shows a lock-in-transition below 15 K. The spiral component induces an electric polarization and also a spontaneous magnetization for which it is said to be multiferroic. Reducing the size of a CoCr2O4 multiferroic material to ~50 nm by a coprecipitation method, we obtain a pure cubic phase with space group, Fd3m and lattice parameter (8.334 ± 0.003°A). A rich sequence of magnetic transitions are examined by measuring temperature and field-dependent magnetization and diffused neutron scattering (DNS) using polarized neutron at different temperatures. While paramagnetic to ferrimagnetic transition is enhanced from 97 K in bulk to 99 K at 0.5 kOe field, followed by a decrease in lock-in-transition (TL) from 15 K in bulk to 8 K, spiral ordering temperature does not show a significant change. A strong disagreement between paramagnetic moment obtained from the fitting of χ-1 = (T/C) + (1/χo) - (b/T - θ) and ferrimagnetic moment obtained from the M versus H loop taken at 2 K, nonsaturated magnetization at 50-100 kOe field, two order of magnitude higher coercivity (Hc), and splitting of ac susceptibly confirm the core-shell structure of the particles. Furthermore, a magnetic scattering analysis clearly shows that while the paramagnetic to ferrimagnetic transition is continuous, the spiral ordering is sharp, short range, and commensurate in contrast to incommensurate spiral order observed single crystal of CoCr2O4.
536 _ _ |0 G:(DE-HGF)POF3-6G15
|f POF III
|x 0
|c POF3-6G15
|a 6G15 - FRM II / MLZ (POF3-6G15)
536 _ _ |a 6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)
|0 G:(DE-HGF)POF3-6G4
|c POF3-623
|f POF III
|x 1
588 _ _ |a Dataset connected to CrossRef
650 2 7 |a Condensed Matter Physics
|0 V:(DE-MLZ)SciArea-120
|2 V:(DE-HGF)
|x 0
650 2 7 |a Magnetism
|0 V:(DE-MLZ)SciArea-170
|2 V:(DE-HGF)
|x 1
650 1 7 |a Magnetic Materials
|0 V:(DE-MLZ)GC-1604-2016
|2 V:(DE-HGF)
|x 0
693 _ _ |a Forschungs-Neutronenquelle Heinz Maier-Leibnitz
|e DNS: Diffuse scattering neutron time of flight spectrometer
|f NL6S
|1 EXP:(DE-MLZ)FRMII-20140101
|0 EXP:(DE-MLZ)DNS-20140101
|5 EXP:(DE-MLZ)DNS-20140101
|6 EXP:(DE-MLZ)NL6S-20140101
|x 0
700 1 _ |a Kumar, D.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Banerjee, A.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Rath, Chandana
|0 P:(DE-HGF)0
|b 3
|e Corresponding author
773 _ _ |a 10.1109/TMAG.2016.2537794
|g Vol. 52, no. 8, p. 1 - 6
|0 PERI:(DE-600)2025397-7
|n 8
|p 1 - 6
|t IEEE transactions on magnetics
|v 52
|y 2016
|x 1941-0069
856 4 _ |u https://juser.fz-juelich.de/record/828002/files/07425267.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828002/files/07425267.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828002/files/07425267.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828002/files/07425267.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828002/files/07425267.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828002/files/07425267.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:828002
|p VDB:MLZ
|p VDB
913 1 _ |a DE-HGF
|9 G:(DE-HGF)POF3-6G15
|x 0
|4 G:(DE-HGF)POF
|v FRM II / MLZ
|1 G:(DE-HGF)POF3-6G0
|0 G:(DE-HGF)POF3-6G15
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-600
|b Forschungsbereich Materie
|l Großgeräte: Materie
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-623
|2 G:(DE-HGF)POF3-600
|v Facility topic: Neutrons for Research on Condensed Matter
|9 G:(DE-HGF)POF3-6G4
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b IEEE T MAGN : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JCNS-FRM-II-20110218
|k JCNS (München) ; Jülich Centre for Neutron Science JCNS (München) ; JCNS-FRM-II
|l JCNS-FRM-II
|x 0
920 1 _ |0 I:(DE-Juel1)JCNS-2-20110106
|k JCNS-2
|l Streumethoden
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JCNS-FRM-II-20110218
980 _ _ |a I:(DE-Juel1)JCNS-2-20110106
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21