000828051 001__ 828051
000828051 005__ 20210129230004.0
000828051 0247_ $$2doi$$a10.1016/j.mbs.2017.02.009
000828051 0247_ $$2ISSN$$a0025-5564
000828051 0247_ $$2ISSN$$a1879-3134
000828051 0247_ $$2WOS$$aWOS:000401386600002
000828051 037__ $$aFZJ-2017-02065
000828051 041__ $$aEnglish
000828051 082__ $$a570
000828051 1001_ $$0P:(DE-Juel1)5963$$aBühler, Jonas$$b0$$eFirst author$$ufzj
000828051 245__ $$aFinite volume schemes for the numerical simulation of tracer transport in plants
000828051 260__ $$aNew York, NY$$bAmerican Elsevier$$c2017
000828051 3367_ $$2DRIVER$$aarticle
000828051 3367_ $$2DataCite$$aOutput Types/Journal article
000828051 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1517900948_9644
000828051 3367_ $$2BibTeX$$aARTICLE
000828051 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000828051 3367_ $$00$$2EndNote$$aJournal Article
000828051 520__ $$aCompartmental models can be used for inverse modeling of long distance tracer transport experiments in plants. Such transport models describe axial convection and diffusion as well as exchange between compartments, and are defined by partial differential equations (PDEs). Since for inverse modeling, the forward simulation needs to be evaluated frequently, a fast PDE solver is required. Here, we compare several different finite volumes schemes up to fifth order for spatial discretization with respect to ac- curacy, computation time and numerical oscillations. The comparison has been performed using initial conditions with varying steepness, and periodic boundary conditions. For time discretization, standard fifth order Runge–Kutta methods are used. For smooth initial conditions, fifth order upwind schemes for spatial discretization yield the most precise and fast solutions. For higher steepness of the initial condi- tion, higher order upwind schemes produce spurious oscillations while flux limiter schemes as well as weighted essentially non-oscillating (WENO) schemes can suppress these oscillations, at the expense of comparably slower convergence rates and higher computation times.
000828051 536__ $$0G:(DE-HGF)POF3-583$$a583 - Innovative Synergisms (POF3-583)$$cPOF3-583$$fPOF III$$x0
000828051 588__ $$aDataset connected to CrossRef
000828051 7001_ $$0P:(DE-Juel1)129333$$aHuber, Gregor$$b1$$ufzj
000828051 7001_ $$0P:(DE-Juel1)129081$$avon Lieres, Eric$$b2$$eCorresponding author$$ufzj
000828051 773__ $$0PERI:(DE-600)2010227-6$$a10.1016/j.mbs.2017.02.009$$gVol. 288, p. 14 - 20$$p14 - 20$$tMathematical biosciences$$v288$$x0025-5564$$y2017
000828051 8564_ $$uhttps://juser.fz-juelich.de/record/828051/files/1-s2.0-S002555641730086X-main.pdf$$yRestricted
000828051 8564_ $$uhttps://juser.fz-juelich.de/record/828051/files/1-s2.0-S002555641730086X-main.gif?subformat=icon$$xicon$$yRestricted
000828051 8564_ $$uhttps://juser.fz-juelich.de/record/828051/files/1-s2.0-S002555641730086X-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000828051 8564_ $$uhttps://juser.fz-juelich.de/record/828051/files/1-s2.0-S002555641730086X-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000828051 8564_ $$uhttps://juser.fz-juelich.de/record/828051/files/1-s2.0-S002555641730086X-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000828051 8564_ $$uhttps://juser.fz-juelich.de/record/828051/files/1-s2.0-S002555641730086X-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000828051 909CO $$ooai:juser.fz-juelich.de:828051$$pVDB
000828051 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)5963$$aForschungszentrum Jülich$$b0$$kFZJ
000828051 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129333$$aForschungszentrum Jülich$$b1$$kFZJ
000828051 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129081$$aForschungszentrum Jülich$$b2$$kFZJ
000828051 9131_ $$0G:(DE-HGF)POF3-583$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vInnovative Synergisms$$x0
000828051 9141_ $$y2017
000828051 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000828051 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000828051 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMATH BIOSCI : 2015
000828051 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000828051 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000828051 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000828051 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000828051 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000828051 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000828051 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000828051 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000828051 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000828051 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000828051 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000828051 920__ $$lyes
000828051 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000828051 9201_ $$0I:(DE-Juel1)IBG-1-20101118$$kIBG-1$$lBiotechnologie$$x1
000828051 980__ $$ajournal
000828051 980__ $$aVDB
000828051 980__ $$aI:(DE-Juel1)IBG-2-20101118
000828051 980__ $$aI:(DE-Juel1)IBG-1-20101118
000828051 980__ $$aUNRESTRICTED