001     828051
005     20210129230004.0
024 7 _ |a 10.1016/j.mbs.2017.02.009
|2 doi
024 7 _ |a 0025-5564
|2 ISSN
024 7 _ |a 1879-3134
|2 ISSN
024 7 _ |a WOS:000401386600002
|2 WOS
037 _ _ |a FZJ-2017-02065
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Bühler, Jonas
|0 P:(DE-Juel1)5963
|b 0
|e First author
|u fzj
245 _ _ |a Finite volume schemes for the numerical simulation of tracer transport in plants
260 _ _ |a New York, NY
|c 2017
|b American Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1517900948_9644
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Compartmental models can be used for inverse modeling of long distance tracer transport experiments in plants. Such transport models describe axial convection and diffusion as well as exchange between compartments, and are defined by partial differential equations (PDEs). Since for inverse modeling, the forward simulation needs to be evaluated frequently, a fast PDE solver is required. Here, we compare several different finite volumes schemes up to fifth order for spatial discretization with respect to ac- curacy, computation time and numerical oscillations. The comparison has been performed using initial conditions with varying steepness, and periodic boundary conditions. For time discretization, standard fifth order Runge–Kutta methods are used. For smooth initial conditions, fifth order upwind schemes for spatial discretization yield the most precise and fast solutions. For higher steepness of the initial condi- tion, higher order upwind schemes produce spurious oscillations while flux limiter schemes as well as weighted essentially non-oscillating (WENO) schemes can suppress these oscillations, at the expense of comparably slower convergence rates and higher computation times.
536 _ _ |a 583 - Innovative Synergisms (POF3-583)
|0 G:(DE-HGF)POF3-583
|c POF3-583
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Huber, Gregor
|0 P:(DE-Juel1)129333
|b 1
|u fzj
700 1 _ |a von Lieres, Eric
|0 P:(DE-Juel1)129081
|b 2
|e Corresponding author
|u fzj
773 _ _ |a 10.1016/j.mbs.2017.02.009
|g Vol. 288, p. 14 - 20
|0 PERI:(DE-600)2010227-6
|p 14 - 20
|t Mathematical biosciences
|v 288
|y 2017
|x 0025-5564
856 4 _ |u https://juser.fz-juelich.de/record/828051/files/1-s2.0-S002555641730086X-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828051/files/1-s2.0-S002555641730086X-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828051/files/1-s2.0-S002555641730086X-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828051/files/1-s2.0-S002555641730086X-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828051/files/1-s2.0-S002555641730086X-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828051/files/1-s2.0-S002555641730086X-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:828051
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)5963
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129333
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129081
913 1 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-583
|2 G:(DE-HGF)POF3-500
|v Innovative Synergisms
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MATH BIOSCI : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
920 1 _ |0 I:(DE-Juel1)IBG-1-20101118
|k IBG-1
|l Biotechnologie
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 _ _ |a I:(DE-Juel1)IBG-1-20101118
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21