000828062 001__ 828062
000828062 005__ 20210129230004.0
000828062 0247_ $$2doi$$a10.1111/gcb.13430
000828062 0247_ $$2ISSN$$a1354-1013
000828062 0247_ $$2ISSN$$a1365-2486
000828062 0247_ $$2WOS$$aWOS:000396829300030
000828062 0247_ $$2altmetric$$aaltmetric:9695149
000828062 0247_ $$2pmid$$apmid:27416519
000828062 037__ $$aFZJ-2017-02067
000828062 082__ $$a570
000828062 1001_ $$0P:(DE-Juel1)166012$$aZhou, Minghua$$b0$$eCorresponding author
000828062 245__ $$aA meta-analysis of soil salinization effects on nitrogen pools, cycles and fluxes in coastal ecosystems
000828062 260__ $$aOxford [u.a.]$$bWiley-Blackwell$$c2017
000828062 3367_ $$2DRIVER$$aarticle
000828062 3367_ $$2DataCite$$aOutput Types/Journal article
000828062 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1489244387_15213
000828062 3367_ $$2BibTeX$$aARTICLE
000828062 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000828062 3367_ $$00$$2EndNote$$aJournal Article
000828062 520__ $$aSalinity intrusion caused by land subsidence resulting from increasing groundwater abstraction, decreasing river sediment loads and increasing sea level because of climate change has caused widespread soil salinization in coastal ecosystems. Soil salinization may greatly alter nitrogen (N) cycling in coastal ecosystems. However, a comprehensive understanding of the effects of soil salinization on ecosystem N pools, cycling processes and fluxes is not available for coastal ecosystems. Therefore, we compiled data from 551 observations from 21 peer-reviewed papers and conducted a meta-analysis of experimental soil salinization effects on 19 variables related to N pools, cycling processes and fluxes in coastal ecosystems. Our results showed that the effects of soil salinization varied across different ecosystem types and salinity levels. Soil salinization increased plant N content (18%), soil NH4+ (12%) and soil total N (210%), although it decreased soil NO3− (2%) and soil microbial biomass N (74%). Increasing soil salinity stimulated soil N2O fluxes as well as hydrological NH4+ and NO2− fluxes more than threefold, although it decreased the hydrological dissolved organic nitrogen (DON) flux (59%). Soil salinization also increased the net N mineralization by 70%, although salinization effects were not observed on the net nitrification, denitrification and dissimilatory nitrate reduction to ammonium in this meta-analysis. Overall, this meta-analysis improves our understanding of the responses of ecosystem N cycling to soil salinization, identifies knowledge gaps and highlights the urgent need for studies on the effects of soil salinization on coastal agro-ecosystem and microbial N immobilization. Additional increases in knowledge are critical for designing sustainable adaptation measures to the predicted intrusion of salinity intrusion so that the productivity of coastal agro-ecosystems can be maintained or improved and the N losses and pollution of the natural environment can be minimized.
000828062 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000828062 588__ $$aDataset connected to CrossRef
000828062 7001_ $$0P:(DE-HGF)0$$aButterbach-Bahl, Klaus$$b1
000828062 7001_ $$0P:(DE-Juel1)129549$$aVereecken, Harry$$b2
000828062 7001_ $$0P:(DE-Juel1)142357$$aBrüggemann, Nicolas$$b3
000828062 773__ $$0PERI:(DE-600)2020313-5$$a10.1111/gcb.13430$$gVol. 23, no. 3, p. 1338 - 1352$$n3$$p1338 - 1352$$tGlobal change biology$$v23$$x1354-1013$$y2017
000828062 909CO $$ooai:juser.fz-juelich.de:828062$$pVDB:Earth_Environment$$pVDB
000828062 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166012$$aForschungszentrum Jülich$$b0$$kFZJ
000828062 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich$$b2$$kFZJ
000828062 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142357$$aForschungszentrum Jülich$$b3$$kFZJ
000828062 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000828062 9141_ $$y2017
000828062 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000828062 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bGLOBAL CHANGE BIOL : 2015
000828062 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000828062 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000828062 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000828062 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000828062 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000828062 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000828062 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000828062 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000828062 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000828062 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000828062 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000828062 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000828062 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bGLOBAL CHANGE BIOL : 2015
000828062 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000828062 980__ $$ajournal
000828062 980__ $$aVDB
000828062 980__ $$aI:(DE-Juel1)IBG-3-20101118
000828062 980__ $$aUNRESTRICTED