001     828066
005     20210129230005.0
024 7 _ |a 10.1111/gcbb.12441
|2 doi
024 7 _ |a 1757-1693
|2 ISSN
024 7 _ |a 1757-1707
|2 ISSN
024 7 _ |a 2128/15294
|2 Handle
024 7 _ |a WOS:000411013500003
|2 WOS
024 7 _ |a altmetric:17878632
|2 altmetric
037 _ _ |a FZJ-2017-02071
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Popp, Denny
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Methane yield of biomass from extensive grassland is affected by compositional changes induced by order of arrival
260 _ _ |a Oxford
|c 2017
|b Wiley-Blackwell
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1515070653_1053
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Low-input grassland biomass from marginal and other slightly more fertile sites can be used for energy production without competing with food or fodder production. The effect of grassland diversity on methane yield has received some attention, but we do not know how community assembly may affect methane yield from grassland biomass. However, methane yields determine the potential economic value of a bioenergy substrate. Hence, a better understanding of how plant community assembly affects methane yield would be important. We measured biomass production and methane yield in the second year of a grassland field experiment which manipulated the order of arrival of different plant functional groups (forbs, grasses or legumes sown first and all sown simultaneously) and sown diversity (9 vs. 21 species). The order of arrival of the plant functional groups significantly determined the relative dominance of each group which in turn mainly explained the variance in aboveground biomass production. Differences in area-specific methane yields were driven by differences in biomass production and which plant functional groups dominated a plot. When grasses were sown first, legumes and grasses codominated a plot and the highest area-specific methane yield was obtained. Overall, the results indicate that altering the order of arrival affected the community functional and species composition (and hence methane yields) much more than sown diversity. Our study shows that a combined use of positive biodiversity effects and guided plant community assembly may be able to optimize methane yields under field conditions. This may allow a guided, sustainable, and lucrative use of grassland biomass for biogas production in the future.
536 _ _ |a 582 - Plant Science (POF3-582)
|0 G:(DE-HGF)POF3-582
|c POF3-582
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a von Gillhaussen, Philipp
|0 P:(DE-Juel1)129426
|b 1
700 1 _ |a Weidlich, Emanuela W. A.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Sträuber, Heike
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Harms, Hauke
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Temperton, Vicky
|0 P:(DE-Juel1)129409
|b 5
|e Corresponding author
773 _ _ |a 10.1111/gcbb.12441
|0 PERI:(DE-600)2495051-8
|n 10
|p 1555–1562
|t Global change biology / Bioenergy
|v 9
|y 2017
|x 1757-1693
856 4 _ |u https://juser.fz-juelich.de/record/828066/files/Popp_et_al-2017-GCB_Bioenergy.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/828066/files/Popp_et_al-2017-GCB_Bioenergy.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/828066/files/Popp_et_al-2017-GCB_Bioenergy.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/828066/files/Popp_et_al-2017-GCB_Bioenergy.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/828066/files/Popp_et_al-2017-GCB_Bioenergy.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/828066/files/Popp_et_al-2017-GCB_Bioenergy.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:828066
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129426
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129409
913 1 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-582
|2 G:(DE-HGF)POF3-500
|v Plant Science
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b GCB BIOENERGY : 2015
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b GCB BIOENERGY : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21