001     828100
005     20240712112823.0
024 7 _ |a 10.1016/j.jpowsour.2017.03.006
|2 doi
024 7 _ |a 0378-7753
|2 ISSN
024 7 _ |a 1873-2755
|2 ISSN
024 7 _ |a WOS:000399867300015
|2 WOS
037 _ _ |a FZJ-2017-02099
041 _ _ |a English
082 _ _ |a 620
100 1 _ |a van den Ham, E. J.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a 3D indium tin oxide electrodes by ultrasonic spray deposition for current collection applications
260 _ _ |a New York, NY [u.a.]
|c 2017
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1489248224_15212
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Three dimensionally (3D) structured indium tin oxide (ITO) thin films are synthesized and characterized as a 3D electrode material for current collection applications. Using metal citrate chemistry in combination with ultrasonic spray deposition, a low cost wet-chemical method has been developed to achieve conformal ITO coatings on non-planar scaffolds. Although there is room for improvement with respect to the resistivity (9.9·10−3 Ω∙cm, 220 nm thick planar films), high quality 3D structured coatings were shown to exhibit conductive properties based on ferrocene reactivity. In view of applications in Li-ion batteries, the electrochemical stability of the current collector was investigated, indicating that stability is guaranteed for voltages of 1.5 V and up (vs. Li+/Li). In addition, subsequent 3D coating of the ITO with WO3 as a negative electrode (battery) material confirmed the 3D ITO layer functions as a proper current collector. Using this approach, an over 4-fold capacity increase was booked for 3D structured WO3 in comparison to planar samples, confirming the current collecting capabilities of the 3D ITO coating. Therefore, the 3D ITO presented is considered as a highly interesting material for 3D battery applications and beyond.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Elen, K.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Bonneux, G.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Maino, G.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Notten, P. H. L.
|0 P:(DE-Juel1)165918
|b 4
|u fzj
700 1 _ |a Van Bael, M. K.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Hardy, A.
|0 P:(DE-HGF)0
|b 6
773 _ _ |a 10.1016/j.jpowsour.2017.03.006
|g Vol. 348, p. 130 - 137
|0 PERI:(DE-600)1491915-1
|p 130 - 137
|t Journal of power sources
|v 348
|y 2017
|x 0378-7753
856 4 _ |u https://juser.fz-juelich.de/record/828100/files/1-s2.0-S0378775317302902-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828100/files/1-s2.0-S0378775317302902-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828100/files/1-s2.0-S0378775317302902-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828100/files/1-s2.0-S0378775317302902-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828100/files/1-s2.0-S0378775317302902-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828100/files/1-s2.0-S0378775317302902-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:828100
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)165918
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J POWER SOURCES : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J POWER SOURCES : 2015
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IET-1-20110218


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21