000828118 001__ 828118
000828118 005__ 20220930130118.0
000828118 0247_ $$2doi$$a10.5194/bg-14-1153-2017
000828118 0247_ $$2Handle$$a2128/14040
000828118 0247_ $$2WOS$$aWOS:000396169300003
000828118 0247_ $$2altmetric$$aaltmetric:17297404
000828118 037__ $$aFZJ-2017-02115
000828118 041__ $$aEnglish
000828118 082__ $$a570
000828118 1001_ $$0P:(DE-Juel1)156268$$aJiang, Xiaoqian$$b0
000828118 245__ $$aColloid-bound and dissolved phosphorus species in topsoil water extracts along a grassland transect from Cambisol to Stagnosol
000828118 260__ $$aKatlenburg-Lindau [u.a.]$$bCopernicus$$c2017
000828118 3367_ $$2DRIVER$$aarticle
000828118 3367_ $$2DataCite$$aOutput Types/Journal article
000828118 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1490684412_14621
000828118 3367_ $$2BibTeX$$aARTICLE
000828118 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000828118 3367_ $$00$$2EndNote$$aJournal Article
000828118 520__ $$aPhosphorus (P) species in colloidal and "dissolved" soil fractions may have different distributions. To understand which P species are potentially involved, we obtained water extracts from the surface soils of a gradient from Cambisol, Stagnic Cambisol to Stagnosol from temperate grassland in Germany. These were filtered to  <  450 nm, and divided into three procedurally defined fractions: small-sized colloids (20–450 nm), nano-sized colloids (1–20 nm), and "dissolved P" (<  1 nm), using asymmetric flow field-flow fractionation (AF4), as well as filtration for solution 31P-nuclear magnetic resonance (NMR) spectroscopy. The total P of soil water extracts increased in the order Cambisol  <  Stagnic Cambisol  <  Stagnosol due to increasing contributions from the dissolved P fraction. Associations of C–Fe/Al–PO43−/pyrophosphate were absent in nano-sized (1–20 nm) colloids from the Cambisol but not in the Stagnosol. The 31P-NMR results indicated that this was accompanied by elevated portions of organic P in the order Cambisol  >  Stagnic Cambisol  >  Stagnosol. Across all soil types, elevated proportions of inositol hexakisphosphate (IHP) species (e.g., myo-, scyllo- and D-chiro-IHP) were associated with soil mineral particles (i.e., bulk soil and small-sized soil colloids), whereas other orthophosphate monoesters and phosphonates were found in the "dissolved" P fraction. We conclude that P species composition varies among colloidal and "dissolved" soil fractions after characterization using advanced techniques, i.e., AF4 and NMR. Furthermore, stagnic properties affect P speciation and availability by potentially releasing dissolved inorganic and ester-bound P forms as well as nano-sized organic matter–Fe/Al–P colloids.
000828118 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000828118 7001_ $$0P:(DE-Juel1)129484$$aKlumpp, Erwin$$b1$$eCorresponding author
000828118 7001_ $$0P:(DE-HGF)0$$aCade-Menun, B. J.$$b2$$eCorresponding author
000828118 7001_ $$0P:(DE-Juel1)145865$$aBol, Roland$$b3
000828118 7001_ $$0P:(DE-Juel1)157638$$aNischwitz, Volker$$b4
000828118 7001_ $$0P:(DE-Juel1)133857$$aWillbold, Sabine$$b5
000828118 7001_ $$0P:(DE-Juel1)129549$$aVereecken, Harry$$b6
000828118 7001_ $$0P:(DE-HGF)0$$aBauke, S. L.$$b7
000828118 7001_ $$0P:(DE-Juel1)129427$$aAmelung, Wulf$$b8
000828118 773__ $$0PERI:(DE-600)2158181-2$$a10.5194/bg-14-1153-2017$$p1153-1164$$tBiogeosciences$$v14$$x1726-4170$$y2017
000828118 8564_ $$uhttps://juser.fz-juelich.de/record/828118/files/bg-14-1153-2017.pdf$$yOpenAccess
000828118 8564_ $$uhttps://juser.fz-juelich.de/record/828118/files/bg-14-1153-2017.gif?subformat=icon$$xicon$$yOpenAccess
000828118 8564_ $$uhttps://juser.fz-juelich.de/record/828118/files/bg-14-1153-2017.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000828118 8564_ $$uhttps://juser.fz-juelich.de/record/828118/files/bg-14-1153-2017.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000828118 8564_ $$uhttps://juser.fz-juelich.de/record/828118/files/bg-14-1153-2017.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000828118 8564_ $$uhttps://juser.fz-juelich.de/record/828118/files/bg-14-1153-2017.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000828118 8767_ $$8Helmholtz-PUC-2017-16$$92017-04-03$$d2017-04-04$$eAPC$$jZahlung erfolgt
000828118 909CO $$ooai:juser.fz-juelich.de:828118$$popenCost$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000828118 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156268$$aForschungszentrum Jülich$$b0$$kFZJ
000828118 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129484$$aForschungszentrum Jülich$$b1$$kFZJ
000828118 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145865$$aForschungszentrum Jülich$$b3$$kFZJ
000828118 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157638$$aForschungszentrum Jülich$$b4$$kFZJ
000828118 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133857$$aForschungszentrum Jülich$$b5$$kFZJ
000828118 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich$$b6$$kFZJ
000828118 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129427$$aForschungszentrum Jülich$$b8$$kFZJ
000828118 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000828118 9141_ $$y2017
000828118 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000828118 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000828118 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000828118 9201_ $$0I:(DE-Juel1)ZEA-3-20090406$$kZEA-3$$lAnalytik$$x1
000828118 980__ $$ajournal
000828118 980__ $$aVDB
000828118 980__ $$aUNRESTRICTED
000828118 980__ $$aI:(DE-Juel1)IBG-3-20101118
000828118 980__ $$aI:(DE-Juel1)ZEA-3-20090406
000828118 9801_ $$aFullTexts
000828118 980__ $$aAPC