001     828118
005     20220930130118.0
024 7 _ |a 10.5194/bg-14-1153-2017
|2 doi
024 7 _ |a 2128/14040
|2 Handle
024 7 _ |a WOS:000396169300003
|2 WOS
024 7 _ |a altmetric:17297404
|2 altmetric
037 _ _ |a FZJ-2017-02115
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Jiang, Xiaoqian
|0 P:(DE-Juel1)156268
|b 0
245 _ _ |a Colloid-bound and dissolved phosphorus species in topsoil water extracts along a grassland transect from Cambisol to Stagnosol
260 _ _ |a Katlenburg-Lindau [u.a.]
|c 2017
|b Copernicus
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1490684412_14621
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Phosphorus (P) species in colloidal and "dissolved" soil fractions may have different distributions. To understand which P species are potentially involved, we obtained water extracts from the surface soils of a gradient from Cambisol, Stagnic Cambisol to Stagnosol from temperate grassland in Germany. These were filtered to  <  450 nm, and divided into three procedurally defined fractions: small-sized colloids (20–450 nm), nano-sized colloids (1–20 nm), and "dissolved P" (<  1 nm), using asymmetric flow field-flow fractionation (AF4), as well as filtration for solution 31P-nuclear magnetic resonance (NMR) spectroscopy. The total P of soil water extracts increased in the order Cambisol  <  Stagnic Cambisol  <  Stagnosol due to increasing contributions from the dissolved P fraction. Associations of C–Fe/Al–PO43−/pyrophosphate were absent in nano-sized (1–20 nm) colloids from the Cambisol but not in the Stagnosol. The 31P-NMR results indicated that this was accompanied by elevated portions of organic P in the order Cambisol  >  Stagnic Cambisol  >  Stagnosol. Across all soil types, elevated proportions of inositol hexakisphosphate (IHP) species (e.g., myo-, scyllo- and D-chiro-IHP) were associated with soil mineral particles (i.e., bulk soil and small-sized soil colloids), whereas other orthophosphate monoesters and phosphonates were found in the "dissolved" P fraction. We conclude that P species composition varies among colloidal and "dissolved" soil fractions after characterization using advanced techniques, i.e., AF4 and NMR. Furthermore, stagnic properties affect P speciation and availability by potentially releasing dissolved inorganic and ester-bound P forms as well as nano-sized organic matter–Fe/Al–P colloids.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
700 1 _ |a Klumpp, Erwin
|0 P:(DE-Juel1)129484
|b 1
|e Corresponding author
700 1 _ |a Cade-Menun, B. J.
|0 P:(DE-HGF)0
|b 2
|e Corresponding author
700 1 _ |a Bol, Roland
|0 P:(DE-Juel1)145865
|b 3
700 1 _ |a Nischwitz, Volker
|0 P:(DE-Juel1)157638
|b 4
700 1 _ |a Willbold, Sabine
|0 P:(DE-Juel1)133857
|b 5
700 1 _ |a Vereecken, Harry
|0 P:(DE-Juel1)129549
|b 6
700 1 _ |a Bauke, S. L.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Amelung, Wulf
|0 P:(DE-Juel1)129427
|b 8
773 _ _ |a 10.5194/bg-14-1153-2017
|0 PERI:(DE-600)2158181-2
|p 1153-1164
|t Biogeosciences
|v 14
|y 2017
|x 1726-4170
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/828118/files/bg-14-1153-2017.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/828118/files/bg-14-1153-2017.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/828118/files/bg-14-1153-2017.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/828118/files/bg-14-1153-2017.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/828118/files/bg-14-1153-2017.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/828118/files/bg-14-1153-2017.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:828118
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB:Earth_Environment
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)156268
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129484
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)145865
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)157638
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)133857
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129549
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)129427
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2017
915 _ _ |a Creative Commons Attribution CC BY 3.0
|0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
920 1 _ |0 I:(DE-Juel1)ZEA-3-20090406
|k ZEA-3
|l Analytik
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a I:(DE-Juel1)ZEA-3-20090406
980 1 _ |a FullTexts
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21