000828154 001__ 828154
000828154 005__ 20220930130118.0
000828154 0247_ $$2doi$$a10.1002/aelm.201600169
000828154 0247_ $$2WOS$$aWOS:000379913000016
000828154 037__ $$aFZJ-2017-02122
000828154 082__ $$a621.3
000828154 1001_ $$0P:(DE-Juel1)165703$$aFunck, Carsten$$b0
000828154 245__ $$aMultidimensional Simulation of Threshold Switching in NbO$_{2}$ Based on an Electric Field Triggered Thermal Runaway Model
000828154 260__ $$aChichester$$bWiley$$c2016
000828154 3367_ $$2DRIVER$$aarticle
000828154 3367_ $$2DataCite$$aOutput Types/Journal article
000828154 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1557381919_25728
000828154 3367_ $$2BibTeX$$aARTICLE
000828154 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000828154 3367_ $$00$$2EndNote$$aJournal Article
000828154 520__ $$aVolatile threshold switching devices have attracted great attention for use as selectors in passive crossbar arrays. These devices show an abrupt hysteretic jump in the current–voltage characteristic and thus offer very high selectivity. As this nonlinearity appears for either voltage polarity, threshold switches are an ideal selector for bipolar-switching redox-based resistive memories. To date, the predominant explanation of the threshold-switching phenomenon in NbO2 and related materials is the insulator-to-metal transition that occurs at a certain temperature and is connected to a phase transition. However, some essential experimental findings are not satisfactorily explained. Here, a multidimensional simulation of the threshold switching in NbO2 is presented that overcomes these shortcomings. The model is based on an electric field-induced thermal runaway that increases the amount of mobile charge carriers in the device. Applying this model in a simulation correctly predicts the experimentally observed threshold-type current–voltage characteristic, inclusive of important features like the narrow opening of the hysteresis and the magnitude of the current jump. Furthermore, the simulation enables to discuss different influencing parameters independently at spatial resolution. The model is also applicable to a wider class of materials showing the threshold switching, but does not show a temperature-induced insulator-to-metal transition.
000828154 536__ $$0G:(DE-HGF)POF3-524$$a524 - Controlling Collective States (POF3-524)$$cPOF3-524$$fPOF III$$x0
000828154 588__ $$aDataset connected to CrossRef
000828154 7001_ $$0P:(DE-Juel1)158062$$aMenzel, Stephan$$b1
000828154 7001_ $$0P:(DE-Juel1)140489$$aAslam, Nabeel$$b2
000828154 7001_ $$0P:(DE-Juel1)156365$$aZhang, Hehe$$b3
000828154 7001_ $$0P:(DE-Juel1)165704$$aHardtdegen, Alexander$$b4
000828154 7001_ $$0P:(DE-HGF)0$$aWaser, Rainer$$b5
000828154 7001_ $$0P:(DE-Juel1)130717$$aHoffmann-Eifert, Susanne$$b6$$eCorresponding author
000828154 773__ $$0PERI:(DE-600)2810904-1$$a10.1002/aelm.201600169$$gVol. 2, no. 7, p. 1600169 -$$n7$$p1600169 -$$tAdvanced electronic materials$$v2$$x2199-160X$$y2016
000828154 8564_ $$uhttps://juser.fz-juelich.de/record/828154/files/Funck_et_al-2016-Advanced_Electronic_Materials.pdf$$yRestricted
000828154 8564_ $$uhttps://juser.fz-juelich.de/record/828154/files/Funck_et_al-2016-Advanced_Electronic_Materials.gif?subformat=icon$$xicon$$yRestricted
000828154 8564_ $$uhttps://juser.fz-juelich.de/record/828154/files/Funck_et_al-2016-Advanced_Electronic_Materials.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000828154 8564_ $$uhttps://juser.fz-juelich.de/record/828154/files/Funck_et_al-2016-Advanced_Electronic_Materials.jpg?subformat=icon-180$$xicon-180$$yRestricted
000828154 8564_ $$uhttps://juser.fz-juelich.de/record/828154/files/Funck_et_al-2016-Advanced_Electronic_Materials.jpg?subformat=icon-640$$xicon-640$$yRestricted
000828154 8564_ $$uhttps://juser.fz-juelich.de/record/828154/files/Funck_et_al-2016-Advanced_Electronic_Materials.pdf?subformat=pdfa$$xpdfa$$yRestricted
000828154 8767_ $$92016-01-28$$d2016-02-10$$eCover$$jZahlung erfolgt$$paelm.201500233R1
000828154 909CO $$ooai:juser.fz-juelich.de:828154$$pOpenAPC$$pVDB$$popenCost
000828154 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165703$$aForschungszentrum Jülich$$b0$$kFZJ
000828154 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158062$$aForschungszentrum Jülich$$b1$$kFZJ
000828154 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156365$$aForschungszentrum Jülich$$b3$$kFZJ
000828154 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165704$$aForschungszentrum Jülich$$b4$$kFZJ
000828154 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b5$$kFZJ
000828154 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130717$$aForschungszentrum Jülich$$b6$$kFZJ
000828154 9131_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000828154 9141_ $$y2017
000828154 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV ELECTRON MATER : 2015
000828154 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000828154 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000828154 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000828154 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000828154 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000828154 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000828154 9201_ $$0I:(DE-Juel1)PGI-10-20170113$$kPGI-10$$lJARA Institut Green IT$$x1
000828154 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000828154 980__ $$ajournal
000828154 980__ $$aVDB
000828154 980__ $$aI:(DE-Juel1)PGI-7-20110106
000828154 980__ $$aI:(DE-Juel1)PGI-10-20170113
000828154 980__ $$aI:(DE-82)080009_20140620
000828154 980__ $$aAPC
000828154 980__ $$aUNRESTRICTED
000828154 9801_ $$aAPC