001     828154
005     20220930130118.0
024 7 _ |a 10.1002/aelm.201600169
|2 doi
024 7 _ |a WOS:000379913000016
|2 WOS
037 _ _ |a FZJ-2017-02122
082 _ _ |a 621.3
100 1 _ |a Funck, Carsten
|0 P:(DE-Juel1)165703
|b 0
245 _ _ |a Multidimensional Simulation of Threshold Switching in NbO$_{2}$ Based on an Electric Field Triggered Thermal Runaway Model
260 _ _ |a Chichester
|c 2016
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1557381919_25728
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Volatile threshold switching devices have attracted great attention for use as selectors in passive crossbar arrays. These devices show an abrupt hysteretic jump in the current–voltage characteristic and thus offer very high selectivity. As this nonlinearity appears for either voltage polarity, threshold switches are an ideal selector for bipolar-switching redox-based resistive memories. To date, the predominant explanation of the threshold-switching phenomenon in NbO2 and related materials is the insulator-to-metal transition that occurs at a certain temperature and is connected to a phase transition. However, some essential experimental findings are not satisfactorily explained. Here, a multidimensional simulation of the threshold switching in NbO2 is presented that overcomes these shortcomings. The model is based on an electric field-induced thermal runaway that increases the amount of mobile charge carriers in the device. Applying this model in a simulation correctly predicts the experimentally observed threshold-type current–voltage characteristic, inclusive of important features like the narrow opening of the hysteresis and the magnitude of the current jump. Furthermore, the simulation enables to discuss different influencing parameters independently at spatial resolution. The model is also applicable to a wider class of materials showing the threshold switching, but does not show a temperature-induced insulator-to-metal transition.
536 _ _ |a 524 - Controlling Collective States (POF3-524)
|0 G:(DE-HGF)POF3-524
|c POF3-524
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Menzel, Stephan
|0 P:(DE-Juel1)158062
|b 1
700 1 _ |a Aslam, Nabeel
|0 P:(DE-Juel1)140489
|b 2
700 1 _ |a Zhang, Hehe
|0 P:(DE-Juel1)156365
|b 3
700 1 _ |a Hardtdegen, Alexander
|0 P:(DE-Juel1)165704
|b 4
700 1 _ |a Waser, Rainer
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Hoffmann-Eifert, Susanne
|0 P:(DE-Juel1)130717
|b 6
|e Corresponding author
773 _ _ |a 10.1002/aelm.201600169
|g Vol. 2, no. 7, p. 1600169 -
|0 PERI:(DE-600)2810904-1
|n 7
|p 1600169 -
|t Advanced electronic materials
|v 2
|y 2016
|x 2199-160X
856 4 _ |u https://juser.fz-juelich.de/record/828154/files/Funck_et_al-2016-Advanced_Electronic_Materials.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828154/files/Funck_et_al-2016-Advanced_Electronic_Materials.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828154/files/Funck_et_al-2016-Advanced_Electronic_Materials.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828154/files/Funck_et_al-2016-Advanced_Electronic_Materials.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828154/files/Funck_et_al-2016-Advanced_Electronic_Materials.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828154/files/Funck_et_al-2016-Advanced_Electronic_Materials.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:828154
|p VDB
|p OpenAPC
|p openCost
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)165703
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)158062
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)156365
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)165704
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)130717
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-524
|2 G:(DE-HGF)POF3-500
|v Controlling Collective States
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV ELECTRON MATER : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-10-20170113
|k PGI-10
|l JARA Institut Green IT
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-Juel1)PGI-10-20170113
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21