000828155 001__ 828155
000828155 005__ 20210129230021.0
000828155 0247_ $$2doi$$a10.1016/j.jhydrol.2017.01.048
000828155 0247_ $$2WOS$$aWOS:000398871100023
000828155 0247_ $$2altmetric$$aaltmetric:19875447
000828155 037__ $$aFZJ-2017-02123
000828155 082__ $$a690
000828155 1001_ $$0P:(DE-Juel1)145813$$aGebler, Sebastian$$b0$$eCorresponding author
000828155 245__ $$aHigh resolution modelling of soil moisture patterns with TerrSysMP: A comparison with sensor network data
000828155 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2017
000828155 3367_ $$2DRIVER$$aarticle
000828155 3367_ $$2DataCite$$aOutput Types/Journal article
000828155 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1489678247_31214
000828155 3367_ $$2BibTeX$$aARTICLE
000828155 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000828155 3367_ $$00$$2EndNote$$aJournal Article
000828155 520__ $$aThe prediction of the spatial and temporal variability of land surface states and fluxes with land surface models at high spatial resolution is still a challenge. This study compares simulation results using TerrSysMP including a 3D variably saturated groundwater flow model (ParFlow) coupled to the Community Land Model (CLM) of a 38 ha managed grassland head-water catchment in the Eifel (Germany), with soil water content (SWC) measurements from a wireless sensor network, actual evapotranspiration recorded by lysimeters and eddy covariance stations and discharge observations. TerrSysMP was discretized with a 10 × 10 m lateral resolution, variable vertical resolution (0.025–0.575 m), and the following parameterization strategies of the subsurface soil hydraulic parameters: (i) completely homogeneous, (ii) homogeneous parameters for different soil horizons, (iii) different parameters for each soil unit and soil horizon and (iv) heterogeneous stochastic realizations. Hydraulic conductivity and Mualem-Van Genuchten parameters in these simulations were sampled from probability density functions, constructed from either (i) soil texture measurements and Rosetta pedotransfer functions (ROS), or (ii) estimated soil hydraulic parameters by 1D inverse modelling using shuffle complex evolution (SCE).The results indicate that the spatial variability of SWC at the scale of a small headwater catchment is dominated by topography and spatially heterogeneous soil hydraulic parameters. The spatial variability of the soil water content thereby increases as a function of heterogeneity of soil hydraulic parameters. For lower levels of complexity, spatial variability of the SWC was underrepresented in particular for the ROS-simulations. Whereas all model simulations were able to reproduce the seasonal evapotranspiration variability, the poor discharge simulations with high model bias are likely related to short-term ET dynamics and the lack of information about bedrock characteristics and an on-site drainage system in the uncalibrated model. In general, simulation performance was better for the SCE setups. The SCE-simulations had a higher inverse air entry parameter resulting in SWC dynamics in better correspondence with data than the ROS simulations during dry periods. This illustrates that small scale measurements of soil hydraulic parameters cannot be transferred to the larger scale and that interpolated 1D inverse parameter estimates result in an acceptable performance for the catchment.
000828155 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000828155 7001_ $$0P:(DE-Juel1)138662$$aHendricks-Franssen, Harrie-Jan$$b1
000828155 7001_ $$0P:(DE-Juel1)151405$$aKollet, Stefan$$b2
000828155 7001_ $$0P:(DE-HGF)0$$aQu, Wei$$b3
000828155 7001_ $$0P:(DE-Juel1)129549$$aVereecken, Harry$$b4
000828155 773__ $$0PERI:(DE-600)1473173-3$$a10.1016/j.jhydrol.2017.01.048$$p309–331$$tJournal of hydrology$$v547$$x0022-1694$$y2017
000828155 8564_ $$uhttps://juser.fz-juelich.de/record/828155/files/High%20resolution%20modelling%20of%20soil%20moisture%20patterns%20with%20TerrSysMP.pdf$$yRestricted
000828155 8564_ $$uhttps://juser.fz-juelich.de/record/828155/files/High%20resolution%20modelling%20of%20soil%20moisture%20patterns%20with%20TerrSysMP.gif?subformat=icon$$xicon$$yRestricted
000828155 8564_ $$uhttps://juser.fz-juelich.de/record/828155/files/High%20resolution%20modelling%20of%20soil%20moisture%20patterns%20with%20TerrSysMP.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000828155 8564_ $$uhttps://juser.fz-juelich.de/record/828155/files/High%20resolution%20modelling%20of%20soil%20moisture%20patterns%20with%20TerrSysMP.jpg?subformat=icon-180$$xicon-180$$yRestricted
000828155 8564_ $$uhttps://juser.fz-juelich.de/record/828155/files/High%20resolution%20modelling%20of%20soil%20moisture%20patterns%20with%20TerrSysMP.jpg?subformat=icon-640$$xicon-640$$yRestricted
000828155 8564_ $$uhttps://juser.fz-juelich.de/record/828155/files/High%20resolution%20modelling%20of%20soil%20moisture%20patterns%20with%20TerrSysMP.pdf?subformat=pdfa$$xpdfa$$yRestricted
000828155 909CO $$ooai:juser.fz-juelich.de:828155$$pVDB:Earth_Environment$$pVDB
000828155 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145813$$aForschungszentrum Jülich$$b0$$kFZJ
000828155 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138662$$aForschungszentrum Jülich$$b1$$kFZJ
000828155 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151405$$aForschungszentrum Jülich$$b2$$kFZJ
000828155 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich$$b4$$kFZJ
000828155 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000828155 9141_ $$y2017
000828155 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000828155 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000828155 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ HYDROL : 2015
000828155 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000828155 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000828155 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000828155 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000828155 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000828155 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000828155 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000828155 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000828155 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000828155 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000828155 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000828155 920__ $$lyes
000828155 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000828155 980__ $$ajournal
000828155 980__ $$aVDB
000828155 980__ $$aI:(DE-Juel1)IBG-3-20101118
000828155 980__ $$aUNRESTRICTED