000828165 001__ 828165
000828165 005__ 20240619083536.0
000828165 0247_ $$2doi$$a10.1063/1.4977047
000828165 0247_ $$2ISSN$$a0021-9606
000828165 0247_ $$2ISSN$$a1089-7690
000828165 0247_ $$2Handle$$a2128/13934
000828165 0247_ $$2WOS$$aWOS:000395901000040
000828165 037__ $$aFZJ-2017-02133
000828165 041__ $$aEnglish
000828165 082__ $$a540
000828165 1001_ $$0P:(DE-HGF)0$$aPołatyńska, Agnieszka$$b0$$eCorresponding author
000828165 245__ $$aTemperature dependent FCS studies using a long working distance objective: Viscosities of supercooled liquids and particle size
000828165 260__ $$aMelville, NY$$bAmerican Institute of Physics$$c2017
000828165 3367_ $$2DRIVER$$aarticle
000828165 3367_ $$2DataCite$$aOutput Types/Journal article
000828165 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1489560455_27798
000828165 3367_ $$2BibTeX$$aARTICLE
000828165 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000828165 3367_ $$00$$2EndNote$$aJournal Article
000828165 520__ $$aIn this work, we describe new experimental setups for Fluorescence Correlation Spectroscopy (FCS) where a long working distance objective is used. Using these setups, FCS measurements in a broad temperature range for a small sample volume of about 50 μlcan be performed. The use of specially designed cells and a dry long working distance objective was essential for avoiding temperature gradients in the sample. The performance of the new setups and a traditional FCS setup with immersion objectives is compared. The FCS data in combination with the Stokes-Einstein (SE) relation were used to obtain the values of the nanoviscosity of a fluid. We show for selected molecular van der Waals supercooled liquids that despite the fact that in these systems, a characteristic length scale can be defined, the nanoviscosity obtained from FCS is in a very good agreement with the macroscopic (rheometric) viscosity of the sample in a broad temperature range. This result corroborates the applicability of the SE relation to supercooled liquids at temperatures above 1.2 Tg. We also show that the temperature dependent size of thermoresponsive microgel particles can be determined by FCS using the designed cells and a long working distance objective in a broader size range without a need to use the correction procedure since the size correction is proportional to the square of the ratio of the hydrodynamic radius to the confocal volume size.
000828165 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000828165 588__ $$aDataset connected to CrossRef
000828165 7001_ $$00000-0001-8119-0667$$aTomczyk, Karolina$$b1
000828165 7001_ $$0P:(DE-HGF)0$$aPochylski, Mikołaj$$b2
000828165 7001_ $$0P:(DE-Juel1)130829$$aMeier, G.$$b3$$ufzj
000828165 7001_ $$0P:(DE-HGF)0$$aGapinski, Jacek$$b4
000828165 7001_ $$0P:(DE-HGF)0$$aBanachowicz, Ewa$$b5
000828165 7001_ $$00000-0002-4967-0641$$aŚliwa, Tomasz$$b6
000828165 7001_ $$00000-0001-6040-7003$$aPatkowski, Adam$$b7
000828165 773__ $$0PERI:(DE-600)1473050-9$$a10.1063/1.4977047$$gVol. 146, no. 8, p. 084506 -$$n8$$p084506 -$$tThe journal of chemical physics$$v146$$x1089-7690$$y2017
000828165 8564_ $$uhttps://juser.fz-juelich.de/record/828165/files/Meier_draft_FCS_Temp_Final.pdf$$yOpenAccess
000828165 8564_ $$uhttps://juser.fz-juelich.de/record/828165/files/Meier_draft_FCS_Temp_Final.gif?subformat=icon$$xicon$$yOpenAccess
000828165 8564_ $$uhttps://juser.fz-juelich.de/record/828165/files/Meier_draft_FCS_Temp_Final.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000828165 8564_ $$uhttps://juser.fz-juelich.de/record/828165/files/Meier_draft_FCS_Temp_Final.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000828165 8564_ $$uhttps://juser.fz-juelich.de/record/828165/files/Meier_draft_FCS_Temp_Final.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000828165 8564_ $$uhttps://juser.fz-juelich.de/record/828165/files/Meier_draft_FCS_Temp_Final.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000828165 909CO $$ooai:juser.fz-juelich.de:828165$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000828165 9101_ $$0I:(DE-HGF)0$$60000-0001-8119-0667$$aExternal Institute$$b1$$kExtern
000828165 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130829$$aForschungszentrum Jülich$$b3$$kFZJ
000828165 9101_ $$0I:(DE-HGF)0$$60000-0002-4967-0641$$aExternal Institute$$b6$$kExtern
000828165 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000828165 9141_ $$y2017
000828165 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000828165 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000828165 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ CHEM PHYS : 2015
000828165 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000828165 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000828165 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000828165 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000828165 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000828165 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000828165 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000828165 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000828165 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000828165 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000828165 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000828165 920__ $$lyes
000828165 9201_ $$0I:(DE-Juel1)ICS-3-20110106$$kICS-3$$lWeiche Materie $$x0
000828165 9801_ $$aFullTexts
000828165 980__ $$ajournal
000828165 980__ $$aVDB
000828165 980__ $$aUNRESTRICTED
000828165 980__ $$aI:(DE-Juel1)ICS-3-20110106