001     828165
005     20240619083536.0
024 7 _ |a 10.1063/1.4977047
|2 doi
024 7 _ |a 0021-9606
|2 ISSN
024 7 _ |a 1089-7690
|2 ISSN
024 7 _ |a 2128/13934
|2 Handle
024 7 _ |a WOS:000395901000040
|2 WOS
037 _ _ |a FZJ-2017-02133
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Połatyńska, Agnieszka
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Temperature dependent FCS studies using a long working distance objective: Viscosities of supercooled liquids and particle size
260 _ _ |a Melville, NY
|c 2017
|b American Institute of Physics
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1489560455_27798
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In this work, we describe new experimental setups for Fluorescence Correlation Spectroscopy (FCS) where a long working distance objective is used. Using these setups, FCS measurements in a broad temperature range for a small sample volume of about 50 μlcan be performed. The use of specially designed cells and a dry long working distance objective was essential for avoiding temperature gradients in the sample. The performance of the new setups and a traditional FCS setup with immersion objectives is compared. The FCS data in combination with the Stokes-Einstein (SE) relation were used to obtain the values of the nanoviscosity of a fluid. We show for selected molecular van der Waals supercooled liquids that despite the fact that in these systems, a characteristic length scale can be defined, the nanoviscosity obtained from FCS is in a very good agreement with the macroscopic (rheometric) viscosity of the sample in a broad temperature range. This result corroborates the applicability of the SE relation to supercooled liquids at temperatures above 1.2 Tg. We also show that the temperature dependent size of thermoresponsive microgel particles can be determined by FCS using the designed cells and a long working distance objective in a broader size range without a need to use the correction procedure since the size correction is proportional to the square of the ratio of the hydrodynamic radius to the confocal volume size.
536 _ _ |a 551 - Functional Macromolecules and Complexes (POF3-551)
|0 G:(DE-HGF)POF3-551
|c POF3-551
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Tomczyk, Karolina
|0 0000-0001-8119-0667
|b 1
700 1 _ |a Pochylski, Mikołaj
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Meier, G.
|0 P:(DE-Juel1)130829
|b 3
|u fzj
700 1 _ |a Gapinski, Jacek
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Banachowicz, Ewa
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Śliwa, Tomasz
|0 0000-0002-4967-0641
|b 6
700 1 _ |a Patkowski, Adam
|0 0000-0001-6040-7003
|b 7
773 _ _ |a 10.1063/1.4977047
|g Vol. 146, no. 8, p. 084506 -
|0 PERI:(DE-600)1473050-9
|n 8
|p 084506 -
|t The journal of chemical physics
|v 146
|y 2017
|x 1089-7690
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/828165/files/Meier_draft_FCS_Temp_Final.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/828165/files/Meier_draft_FCS_Temp_Final.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/828165/files/Meier_draft_FCS_Temp_Final.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/828165/files/Meier_draft_FCS_Temp_Final.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/828165/files/Meier_draft_FCS_Temp_Final.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/828165/files/Meier_draft_FCS_Temp_Final.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:828165
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 0000-0001-8119-0667
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130829
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 0000-0002-4967-0641
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-551
|2 G:(DE-HGF)POF3-500
|v Functional Macromolecules and Complexes
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J CHEM PHYS : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-3-20110106
|k ICS-3
|l Weiche Materie
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ICS-3-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21