001     828175
005     20240712101010.0
024 7 _ |a 10.1175/BAMS-D-15-00213.1
|2 doi
024 7 _ |a 0003-0007
|2 ISSN
024 7 _ |a 1520-0477
|2 ISSN
024 7 _ |a WOS:000395826700009
|2 WOS
024 7 _ |a 2128/20699
|2 Handle
024 7 _ |a altmetric:8200755
|2 altmetric
037 _ _ |a FZJ-2017-02143
082 _ _ |a 550
100 1 _ |a Voigt, Christiane
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a ML-CIRRUS: The Airborne Experiment on Natural Cirrus and Contrail Cirrus with the High-Altitude Long-Range Research Aircraft HALO
260 _ _ |a Boston, Mass.
|c 2017
|b ASM
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1489765974_5354
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The Midlatitude Cirrus experiment (ML-CIRRUS) deployed the High Altitude and Long Range Research Aircraft (HALO) to obtain new insights into nucleation, life cycle, and climate impact of natural cirrus and aircraft-induced contrail cirrus. Direct observations of cirrus properties and their variability are still incomplete, currently limiting our understanding of the clouds’ impact on climate. Also, dynamical effects on clouds and feedbacks are not adequately represented in today’s weather prediction models.Here, we present the rationale, objectives, and selected scientific highlights of ML-CIRRUS using the G-550 aircraft of the German atmospheric science community. The first combined in situ–remote sensing cloud mission with HALO united state-of-the-art cloud probes, a lidar and novel ice residual, aerosol, trace gas, and radiation instrumentation. The aircraft observations were accompanied by remote sensing from satellite and ground and by numerical simulations.In spring 2014, HALO performed 16 flights above Europe with a focus on anthropogenic contrail cirrus and midlatitude cirrus induced by frontal systems including warm conveyor belts and other dynamical regimes (jet streams, mountain waves, and convection). Highlights from ML-CIRRUS include 1) new observations of microphysical and radiative cirrus properties and their variability in meteorological regimes typical for midlatitudes, 2) insights into occurrence of in situ–formed and lifted liquid-origin cirrus, 3) validation of cloud forecasts and satellite products, 4) assessment of contrail predictability, and 5) direct observations of contrail cirrus and their distinction from natural cirrus. Hence, ML-CIRRUS provides a comprehensive dataset on cirrus in the densely populated European midlatitudes with the scope to enhance our understanding of cirrus clouds and their role for climate and weather.
536 _ _ |a 243 - Tropospheric trace substances and their transformation processes (POF3-243)
|0 G:(DE-HGF)POF3-243
|c POF3-243
|f POF III
|x 0
536 _ _ |a 244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)
|0 G:(DE-HGF)POF3-244
|c POF3-244
|f POF III
|x 1
536 _ _ |0 G:(DE-Juel1)HITEC-20170406
|x 2
|c HITEC-20170406
|a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Schumann, Ulrich
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Minikin, Andreas
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Abdelmonem, Ahmed
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Afchine, Armin
|0 P:(DE-Juel1)129108
|b 4
|u fzj
700 1 _ |a Borrmann, Stephan
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Boettcher, Maxi
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Buchholz, Bernhard
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Bugliaro, Luca
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Costa, Anja
|0 P:(DE-Juel1)156523
|b 9
|u fzj
700 1 _ |a Curtius, Joachim
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Dollner, Maximilian
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Dörnbrack, Andreas
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Dreiling, Volker
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Ebert, Volker
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Ehrlich, Andre
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Fix, Andreas
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Forster, Linda
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Frank, Fabian
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Fütterer, Daniel
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Giez, Andreas
|0 P:(DE-HGF)0
|b 20
700 1 _ |a Graf, Kaspar
|0 P:(DE-HGF)0
|b 21
700 1 _ |a Grooß, Jens-Uwe
|0 P:(DE-Juel1)129122
|b 22
|u fzj
700 1 _ |a Groß, Silke
|0 P:(DE-HGF)0
|b 23
700 1 _ |a Heimerl, Katharina
|0 P:(DE-HGF)0
|b 24
700 1 _ |a Heinold, Bernd
|0 P:(DE-HGF)0
|b 25
700 1 _ |a Hüneke, Tilman
|0 P:(DE-HGF)0
|b 26
700 1 _ |a Järvinen, Emma
|0 P:(DE-HGF)0
|b 27
700 1 _ |a Jurkat, Tina
|0 P:(DE-HGF)0
|b 28
700 1 _ |a Kaufmann, Stefan
|0 P:(DE-HGF)0
|b 29
700 1 _ |a Kenntner, Mareike
|0 P:(DE-HGF)0
|b 30
700 1 _ |a Klingebiel, Marcus
|0 P:(DE-HGF)0
|b 31
700 1 _ |a Klimach, Thomas
|0 P:(DE-HGF)0
|b 32
700 1 _ |a Kohl, Rebecca
|0 P:(DE-HGF)0
|b 33
700 1 _ |a Krämer, Martina
|0 P:(DE-Juel1)129131
|b 34
|u fzj
700 1 _ |a Krisna, Trismono Candra
|0 P:(DE-HGF)0
|b 35
700 1 _ |a Luebke, Anna
|0 P:(DE-Juel1)161554
|b 36
700 1 _ |a Mayer, Bernhard
|0 P:(DE-HGF)0
|b 37
700 1 _ |a Mertes, Stephan
|0 P:(DE-HGF)0
|b 38
700 1 _ |a Molleker, Sergej
|0 P:(DE-HGF)0
|b 39
700 1 _ |a Petzold, Andreas
|0 P:(DE-Juel1)136669
|b 40
|u fzj
700 1 _ |a Pfeilsticker, Klaus
|0 P:(DE-HGF)0
|b 41
700 1 _ |a Port, Max
|0 P:(DE-HGF)0
|b 42
700 1 _ |a Rapp, Markus
|0 P:(DE-HGF)0
|b 43
700 1 _ |a Reutter, Philipp
|0 P:(DE-HGF)0
|b 44
700 1 _ |a Rolf, Christian
|0 P:(DE-Juel1)139013
|b 45
|u fzj
700 1 _ |a Rose, Diana
|0 P:(DE-HGF)0
|b 46
700 1 _ |a Sauer, Daniel
|0 P:(DE-HGF)0
|b 47
700 1 _ |a Schäfler, Andreas
|0 P:(DE-HGF)0
|b 48
700 1 _ |a Schlage, Romy
|0 P:(DE-HGF)0
|b 49
700 1 _ |a Schnaiter, Martin
|0 P:(DE-HGF)0
|b 50
700 1 _ |a Schneider, Johannes
|0 P:(DE-HGF)0
|b 51
700 1 _ |a Spelten, Nicole
|0 P:(DE-Juel1)129155
|b 52
|u fzj
700 1 _ |a Spichtinger, Peter
|0 P:(DE-HGF)0
|b 53
700 1 _ |a Stock, Paul
|0 P:(DE-HGF)0
|b 54
700 1 _ |a Walser, Adrian
|0 P:(DE-HGF)0
|b 55
700 1 _ |a Weigel, Ralf
|0 P:(DE-HGF)0
|b 56
700 1 _ |a Weinzierl, Bernadett
|0 P:(DE-HGF)0
|b 57
700 1 _ |a Wendisch, Manfred
|0 P:(DE-HGF)0
|b 58
700 1 _ |a Werner, Frank
|0 P:(DE-HGF)0
|b 59
700 1 _ |a Wernli, Heini
|0 P:(DE-HGF)0
|b 60
700 1 _ |a Wirth, Martin
|0 P:(DE-HGF)0
|b 61
700 1 _ |a Zahn, Andreas
|0 P:(DE-HGF)0
|b 62
700 1 _ |a Ziereis, Helmut
|0 P:(DE-HGF)0
|b 63
700 1 _ |a Zöger, Martin
|0 P:(DE-HGF)0
|b 64
773 _ _ |a 10.1175/BAMS-D-15-00213.1
|g Vol. 98, no. 2, p. 271 - 288
|0 PERI:(DE-600)2029396-3
|n 2
|p 271 - 288
|t Bulletin of the American Meteorological Society
|v 98
|y 2017
|x 1520-0477
856 4 _ |u https://juser.fz-juelich.de/record/828175/files/bams-d-15-00213.1.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:828175
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129108
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)156523
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 22
|6 P:(DE-Juel1)129122
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 34
|6 P:(DE-Juel1)129131
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 40
|6 P:(DE-Juel1)136669
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 45
|6 P:(DE-Juel1)139013
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 52
|6 P:(DE-Juel1)129155
913 1 _ |a DE-HGF
|l Atmosphäre und Klima
|1 G:(DE-HGF)POF3-240
|0 G:(DE-HGF)POF3-243
|2 G:(DE-HGF)POF3-200
|v Tropospheric trace substances and their transformation processes
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
913 1 _ |a DE-HGF
|l Atmosphäre und Klima
|1 G:(DE-HGF)POF3-240
|0 G:(DE-HGF)POF3-244
|2 G:(DE-HGF)POF3-200
|v Composition and dynamics of the upper troposphere and middle atmosphere
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b B AM METEOROL SOC : 2015
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b B AM METEOROL SOC : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-7-20101013
|k IEK-7
|l Stratosphäre
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-8-20101013
|k IEK-8
|l Troposphäre
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-7-20101013
980 _ _ |a I:(DE-Juel1)IEK-8-20101013
981 _ _ |a I:(DE-Juel1)ICE-4-20101013
981 _ _ |a I:(DE-Juel1)ICE-3-20101013
981 _ _ |a I:(DE-Juel1)ICE-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21