000828184 001__ 828184
000828184 005__ 20210129230027.0
000828184 0247_ $$2doi$$a10.1021/acs.chemmater.7b00220
000828184 0247_ $$2ISSN$$a0897-4756
000828184 0247_ $$2ISSN$$a1520-5002
000828184 0247_ $$2WOS$$aWOS:000399264100063
000828184 037__ $$aFZJ-2017-02152
000828184 082__ $$a540
000828184 1001_ $$0P:(DE-Juel1)145710$$aDu, Hongchu$$b0$$eCorresponding author
000828184 245__ $$aNanosized Conducting Filaments Formed by Atomic-Scale Defects in Redox-Based Resistive Switching Memories
000828184 260__ $$aWashington, DC$$bAmerican Chemical Society$$c2017
000828184 3367_ $$2DRIVER$$aarticle
000828184 3367_ $$2DataCite$$aOutput Types/Journal article
000828184 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1491891979_19696
000828184 3367_ $$2BibTeX$$aARTICLE
000828184 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000828184 3367_ $$00$$2EndNote$$aJournal Article
000828184 520__ $$aRedox-based resistive switching phenomena are found in many metal oxides and hold great promise for applications in next-generation memories and neuromorphic computing systems. Resistive switching involves the formation and disruption of electrically conducting filaments through ion migration accompanied by local electrochemical redox reactions. These structural changes are often explained by point defects, but so far clear experimental evidence of such defects is missing. Here, nanosized conducting filaments in Fe-doped SrTiO3 thin-film memories are visualized, for the first time, by scanning transmission electron microscopy and core-loss spectroscopy. Conducting filaments are identified by a high local concentration of trivalent titanium ions correlating to oxygen vacancies. Strontium vacancies and lattice distortions also exist in the filaments. Despite a high concentration of defects in the filaments, their general SrTiO3 perovskite structure is essentially preserved. First insights into the switching mechanism are deduced from a snapshot simultaneously showing multiple nanosized filaments in different evolutionary stages. The coexistence of a high Ti3+ concentration along with Sr- and O-vacancies in the conducting filaments provides atomic scale explanations for the resistive switching mechanisms. The results shed unique light on the complexity of the conducting filament formation that cation and anion defects need to be considered jointly.
000828184 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000828184 588__ $$aDataset connected to CrossRef
000828184 7001_ $$0P:(DE-Juel1)130736$$aJia, Chun-Lin$$b1
000828184 7001_ $$0P:(DE-HGF)0$$aKoehl, Annemarie$$b2
000828184 7001_ $$0P:(DE-Juel1)130525$$aBarthel, Juri$$b3
000828184 7001_ $$0P:(DE-Juel1)130620$$aDittmann, Regina$$b4
000828184 7001_ $$0P:(DE-HGF)0$$aWaser, Rainer$$b5
000828184 7001_ $$0P:(DE-Juel1)130824$$aMayer, Joachim$$b6
000828184 773__ $$0PERI:(DE-600)1500399-1$$a10.1021/acs.chemmater.7b00220$$gp. acs.chemmater.7b00220$$n7$$p3164–3173$$tChemistry of materials$$v29$$x1520-5002$$y2017
000828184 8564_ $$uhttps://juser.fz-juelich.de/record/828184/files/acs.chemmater.7b00220.pdf$$yRestricted
000828184 8564_ $$uhttps://juser.fz-juelich.de/record/828184/files/acs.chemmater.7b00220.gif?subformat=icon$$xicon$$yRestricted
000828184 8564_ $$uhttps://juser.fz-juelich.de/record/828184/files/acs.chemmater.7b00220.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000828184 8564_ $$uhttps://juser.fz-juelich.de/record/828184/files/acs.chemmater.7b00220.jpg?subformat=icon-180$$xicon-180$$yRestricted
000828184 8564_ $$uhttps://juser.fz-juelich.de/record/828184/files/acs.chemmater.7b00220.jpg?subformat=icon-640$$xicon-640$$yRestricted
000828184 8564_ $$uhttps://juser.fz-juelich.de/record/828184/files/acs.chemmater.7b00220.pdf?subformat=pdfa$$xpdfa$$yRestricted
000828184 909CO $$ooai:juser.fz-juelich.de:828184$$pVDB
000828184 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145710$$aForschungszentrum Jülich$$b0$$kFZJ
000828184 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130736$$aForschungszentrum Jülich$$b1$$kFZJ
000828184 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130525$$aForschungszentrum Jülich$$b3$$kFZJ
000828184 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130620$$aForschungszentrum Jülich$$b4$$kFZJ
000828184 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b5$$kFZJ
000828184 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130824$$aForschungszentrum Jülich$$b6$$kFZJ
000828184 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000828184 9141_ $$y2017
000828184 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000828184 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEM MATER : 2015
000828184 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000828184 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000828184 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000828184 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000828184 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000828184 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000828184 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000828184 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000828184 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000828184 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000828184 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCHEM MATER : 2015
000828184 920__ $$lyes
000828184 9201_ $$0I:(DE-Juel1)ER-C-2-20170209$$kER-C-2$$lMaterialwissenschaft u. Werkstofftechnik$$x0
000828184 980__ $$ajournal
000828184 980__ $$aVDB
000828184 980__ $$aI:(DE-Juel1)ER-C-2-20170209
000828184 980__ $$aUNRESTRICTED