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Abstract The human pathogenic bacterium Pseudomonas
aeruginosa produces thamnolipids, glycolipids with functions
for bacterial motility, biofilm formation, and uptake of hydro-
phobic substrates. Rhamnolipids represent a chemically hetero-
geneous group of secondary metabolites composed of one or
two rhamnose molecules linked to one or mostly two 3-
hydroxyfatty acids of various chain lengths. The biosynthetic
pathway involves rhamnosyltransferase I encoded by the rh/AB
operon, which synthesizes 3-(3-hydroxyalkanoyloxy)alkanoic
acids (HA As) followed by their coupling to one thamnose moi-
ety. The resulting mono-rhamnolipids are converted to di-
rhamnolipids in a third reaction catalyzed by the
rhamnosyltransferase II RhIC. However, the mechanism be-
hind the biosynthesis of rhamnolipids containing only a single
fatty acid is still unknown. To understand the role of proteins
involved in thamnolipid biosynthesis the heterologous expres-
sion of rhl-genes in non-pathogenic Pseudomonas putida
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KT2440 strains was used in this study to circumvent the com-
plex quorum sensing regulation in P. aeruginosa. Our results
reveal that RhlA and RhIB are independently involved in
rhamnolipid biosynthesis and not in the form of a RhlAB het-
erodimer complex as it has been previously postulated.
Furthermore, we demonstrate that mono-rhamnolipids provid-
ed extracellularly as well as HAAs as their precursors are gen-
erally taken up into the cell and are subsequently converted to
di-rhamnolipids by P. putida and the native host P. aeruginosa.
Finally, our results throw light on the biosynthesis of
rhamnolipids containing one fatty acid, which occurs by hydro-
lyzation of typical rhamnolipids containing two fatty acids,
valuable for the production of designer thamnolipids with de-
sired physicochemical properties.

Keywords Pseudomonas aeruginosa - Rhamnolipids -
Biosurfactant - Pseudomonas putida - Biosynthesis pathway

Central Institute for Engineering, Electronics and Analytics,
Section Analytics (ZEA-3), Forschungszentrum Jiilich,
Wilhelm-Johnen-Straf3e, 52428 Jiilich, Germany

Institute for Bio- and Geosciences, IBG-3: Agrosphere,
Forschungszentrum Jiilich, Wilhelm-Johnen-Straf3e,
52428 Jiilich, Germany

Institute of Applied Microbiology (iIAMB), Aachen Biology and
Biotechnology (ABBt), RWTH Aachen University, Worringerweg 1,
52074 Aachen, Germany

Institute of Food Science and Biotechnology, Department of
Bioprocess Engineering (150k), University of Hohenheim,
Fruwirthstra3e 12, 70599 Stuttgart, Germany

iQu Collegiate-Didactics, Heinrich-Heine-University Diisseldorf,
Universitétsstrae 1, 40225 Diisseldorf, Germany

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s00253-016-8041-3&domain=pdf

2866

Appl Microbiol Biotechnol (2017) 101:2865-2878

Introduction

The biosurfactant rhamnolipid, first described by Jarvis and
Johnson (1949), has various physiological roles and industrial
applications (Lang and Wullbrandt 1999; Maier and Soberén-
Chavez 2000). Rhamnolipids are produced and secreted to the
extracellular milieu mainly by bacteria of the genus
Pseudomonas (Abdel-Mawgoud et al. 2010). The opportunis-
tic human pathogen Pseudomonas aeruginosa is among the
best rhamnolipid producers (Giani et al. 1997; Miiller et al.
2011), although bacteria from the genus Burkholderia also
produce rhamnolipids (H&uBler et al. 1998; André et al.
2006; Funston et al. 2016).

In P. aeruginosa, rhamnolipids are essential for swarming
motility, involved in biofilm formation and act as hemolysins
(Kohler et al. 2000; Davey et al. 2003; Tremblay et al. 2007)
what makes them to important virulence factors (Kownatzki
et al. 1987). Rhamnolipids play a role in shielding of P.
aeruginosa cells from host defense, e.g., they inhibit the
phagocytosis by macrophages (McClure and Schiller 1996;
van Gennip et al. 2009; Alhede et al. 2009). Additionally,
rhamnolipids enhance the uptake of hydrophobic substrates
like long-chain alkanes, e.g., octadecane (Zhang and Miller
1995; Al-Tahhan et al. 2000; Noordman and Jassen 2002).

Rhamnolipids feature a low toxicity and an enhanced bio-
degradability in comparison to detergents with petrochemical
origin (Maslin and Maier 2000; Johann et al. 2016). Based on
their surface active properties, they are used for bioremedia-
tion (Nguyen et al. 2008), enhanced oil recovery (Wang et al.
2007), and in cosmetic and food industries (Banat et al. 2010).

Rhamnolipids belong to the chemically diverse group of
glycolipids composed of a hydrophilic rhamnose sugar moie-
ty, which is linked through a 3-glycosidic bond to a hydro-
phobic fatty acid moiety (Hauser and Karnovsky 1957). The
number of thamnose molecules allows a systematic distinc-
tion between mono- and di-thamnolipids. The fatty acid resi-
due typically consists of a dimer of two 3-hydroxyfatty acids
forming an intramolecular ester (Déziel et al. 1999; Abdel-
Mawgoud et al. 2010), although rhamnolipids with only one
3-hydroxyfatty acid are known, too (Syldatk et al. 1985a).
These rhamnolipids are called mono-rhamno-mono-lipids
and di-thamno-mono-lipids, respectively (Fig. 1). These four
species show different physicochemical properties, whereby
they can be selectively used for various applications.

In P. aeruginosa, the length of the fatty acid chains in
rhamnolipids varies from Cg to Cy4 with a predominant spe-
cies containing C;o-Cy fatty acid chains in mono- as well as
in di-rhamnolipids (Déziel et al. 1999; Abdel-Mawgoud et al.
2010). In contrast, rhamnolipids produced by bacteria from
the genus Burkholderia contain long-chain fatty acid with a
predominant C4-C;4 species (Manso Pajarron et al. 1993;
Dubeau et al. 2009). Additionally, mono- and di-unsaturated
fatty acids can be found in rhamnolipids, further expanding
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the existing chemical diversity of thamnolipids (Abalos et al.
2001) and their potential applications in biotechnology and
industry.

Rhamnolipid biosynthesis occurs in three consecutive en-
zymatic reactions. In the first step, RhlA synthesizes 3-(3-
hydroxyalkanoyloxy)alkanoic acids (HAAs) by esterification
of two 3-hydroxyacyl molecules bound to acyl carrier protein
(ACP) descending from the fatty acid de novo synthesis
(Rehm et al. 2001). RhIB links an HAA molecule with
dTDP-L-rhamnose descending from glucose-6-phosphate
(Olvera et al. 1999; Rahim et al. 2000), to create mono-
rhamnolipids (Ochsner et al. 1994a). The last reaction in the
di-rhamnolipid synthesis pathway is catalyzed by the
rhamnosyltransferase II (RhIC), which joins a second dTDP-
L-rhamnose molecule to the mono-rhamnolipids (Rahim et al.
2001). The biosynthesis of mono- and di-rhamno-mono-lipids
with a single 3-hydroxyfatty acid is still speculative. Possibly,
they descend from direct condensation of a dTDP-L-
rhamnose with a 3-hydroxyfatty acid chain by RhIB. These
molecules could be used as precursors for synthesis of di-
rhamno-mono-lipids by RhIC. Optionally, they could be pro-
duced by hydrolysis of one unit from the dimer of esterified
fatty acids in mono- and di-rhamno-di-lipids by a still un-
known enzyme (Sober6n-Chavez et al. 2005).

The genes rhlA and rhiB are organized in a bicistronic
operon and encode proteins originally described as two sub-
units forming a functional rhamnosyltransferase I enzyme
complex (Ochsner et al. 1994a). However, evidences that a
P. aeruginosa ArhIB mutant strain produces HAAs (Déziel
et al. 2003) and that heterologous expression of 7#/A in
Escherichia coli leads to production of HAAs (Zhu and
Rock 2008) indicate that RhlA exerts its function indepen-
dently of RhIB. The gene rh/C is also organized in a
bicistronic operon with PA1/31, a gene of unknown function
(Rahim et al. 2001).

In P. aeruginosa, the two rhl-operons are transcriptionally
regulated by the quorum sensing (QS) regulatory network
(Ochsner et al. 1994b; Ochsner and Reiser 1995; Pearson
et al. 1997) and probably by other signaling systems
(Wilhelm et al. 2007; Rosenau et al. 2010; Henkel et al.
2013). The QS autoinducer molecules butanoyl-homoserine-
lactone (C4-HSL) and 3-oxo-dodecanoyl-homoserine-lactone
(3-0x0-C;,-HSL) are synthesized by Rhll and LasI, respec-
tively. After the concentration of autoinducer molecules
reaches a threshold, they bind to the regulator proteins RhIR
and LasR to induce the expression of the #A/-genes (Williams
and Camara 2009; Reis et al. 2011).

The complex regulatory network controlling the
rhamnolipid production in P. aeruginosa and its classification
as an opportunistic pathogen are bottlenecks for their produc-
tion (Miiller and Hausmann 2011) and disadvantageous for
many industrial applications (Toribio et al. 2010). Searching
for an alternative rhamnolipid producing host, the non-
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Fig.1 Chemical structures of rhamnolipids. Rhamnolipids are separated
into mono- and di-thamnolipids based on the number of L-rhamnose
residues. Beside typical rthamnolipid species containing two 3-
hydroxyfatty acids (mono-rhamno-di-lipid and di-thamno-di-lipid), there
exist species containing only one fatty acid chain (mono-rhamno-mono-

pathogenic Pseudomonas putida KT2440 strain was identi-
fied as a suitable organism (Ochsner et al. 1995; Wittgens
et al. 2011; Behrens et al. 2016; Beuker et al. 2016). It pro-
vides both pathways essential for the production of 3-
hydroxyfatty acids and dTDP-L-rhamnose used as
rhamnolipid precursors (Nelson et al. 2002). Although evolu-
tionary closely related with P. aeruginosa, P. putida is lacking
the complex regulatory circuits found in P. aeruginosa, what
makes P. putida KT2440 a favorable host for the heterologous
production of rhamnolipids and an ideal simplified genetic
and physiologic background to study molecular aspects of
rhamnolipid biosynthesis.

In this study, we have expressed P. aeruginosa genes in-
volved in rhamnolipid biosynthesis in P. putida KT2440 to
address the question if their protein-protein interactions play a
role for function and/or stabilization of individual enzymes. A
set of expression plasmids containing single genes or operons
was used for modular expression of different gene combina-
tions. Chemical analysis of produced rhamnolipids and pre-
cursors revealed novel insights in molecular interactions of
RhIA and RhIB. Furthermore, we could show that exogenous
rhamnolipids and HAAs are taken up by the cell and that they
flow into the rhamnolipid biosynthesis pathway. These novel
insights in the rhamnolipid biosynthesis pathway can be used
for modulation of biochemical properties to create designer
rhamnolipids.

lipid and di-rhamno-mono-lipid). Rhamnolipids from P. aeruginosa typ-
ically contain fatty acids with chain lengths between Cg and Cy4 (n = 1-7)
while organisms from the genus Burkholderia produce rhamnolipids with
longer alkyl chains and typical lengths between C;, and C;¢ (n = 5-9)

Material and methods
Bacterial strains and culture conditions

P. aeruginosa PAO1 (DSM-22644; Hancock and Carey
1979), P. putida KT2440 (DSM-6125; Nelson et al. 2002),
and E. coli DH5x (DSM-6897; Grant et al. 1990) were rou-
tinely cultivated in 10 ml LB medium (10 g/l tryptone, 5 g/l
yeast extract, 10 g/l NaCl) in 100 ml Erlenmeyer flasks. All
strains were grown at 150 rpm orbital shaking and 37 °C
except P. putida, which were cultivated at 30 °C.

Amplification of rhl-genes and plasmid construction

The genes for thamnolipid biosynthesis were amplified as
single genes or operon structures from the genomic DNA of
P. aeruginosa PAOL1 as a template (isolated with DNeasy
Blood and Tissue Kit, QIAGEN, Hilden, Germany) using
PfuTurbo DNA polymerase (Stratagene, Waldbronn,
Germany) as described by the supplier. The single genes were
amplified starting 20 bp upstream of the start codon to main-
tain the native ribosomal binding site. The 7#/AB and PA1131-
rhIC operons started at their native transcriptional start se-
quences (see Rahim et al. 2001) to maintain the original full
length untranslated regions (5’-UTR), which for 74/AB result-
ed in the highest amounts of mono-rhamnolipids in previous
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experiments comparing various lengths of upstream regions
(data not shown). The sequences of the primers, obtained from
Eurofins MWG Operon (Ebersberg, Germany), and restriction
sites used for cloning of the resulting PCR products are listed
in Table 1. The hydrolyzed PCR products were ligated
into the respective sites of the pVLT33 vector (de
Lorenzo et al. 1993) using restriction enzymes and T4
DNA ligase (Fermentas GmbH, St. Leon-Rot, Germany)
as recommended by the supplier. DNA recombination
was carried out as described in Sambrook and Russell
(2001). E. coli DH5x cells were transformed with the
resulting recombinant plasmids (Table 1) using standard
protocol (Hanahan 1983) and positive clones were se-
lected on LB-agar containing 50 pg/ml kanamycin after
their incubation over night at 37 °C. The expression
plasmid pVLT33 rhlABC containing the biosynthetic
operon rhlABC was created by cloning an additional
rhiC gene into pVLT33 rhlAB (Table 1).

Structure homology modeling and site-directed
mutagenesis of the rhlA gene

The three-dimensional structure of RhlA was modeled using
the Phyre server (Kelley and Sternberg 2009) with
Streptomyces lividans chloroperoxidase L (PDB code:
1A88) identified as the best template, with a 14% sequence

Table 1

identity, an E-value of 1 x 1073 and a 100% prediction con-

fidence. Chloroperoxidase L belongs to the family with an o/
[3-hydrolase fold and the Ser-His-Asp catalytic triad. The
structural superimposition of a RhlA model and a
chloroperoxidase L structure was performed using the
PyMOL software (DeLano 2002). To inactivate, RhlA
Ser102, identified as a catalytic residue of RhlA, was replaced
by alanine with the QuikChange® Site-Directed Mutagenesis
Kit (Stratagene, Waldbronn, Germany) using the plasmid
pVLT33 rhIAB as template and the primer pair rh/A*B
(Table 1) as recommend by the supplier.

Production of rhamnolipids and HAAs in recombinant
P, putida

P, putida KT2440 was transformed by electroporation as de-
scribed by Choi et al. (2006). Cells carrying pVLT33-based
recombinant plasmids were selected using LB-agar medium
or LB liquid medium containing 50 pg/ml kanamycin after
incubation at 30 °C.

For the production of rhamnolipids and HAAs, main cul-
tures of 100 ml LB medium in 1 1 Erlenmeyer flasks were
inoculated to an ODsg of 0.05 using overnight cultures and
incubated at 30 °C and 150 rpm. The medium was supple-
mented with 10 g/l glucose, 50 pg/ml kanamycin, and 0.4 mM
isopropyl-3-D-thiogalactopyranoside (IPTG) to induce the

PCR primers, restriction enzymes and resulting recombinant plasmids or P. aeruginosa mutant strains

Gene/operon  Primer ~ Sequence (5'- > 3')

Restriction enzymes Recombinant plasmid

or mutant strain

rhiA Up TTGAATTCAAATTTTTGGGAGGTGTGAAATGCGGCG EcoR1 pVLT33 rhiA
Down TTTGGTACCTCAGGCGTAGCCGATGGCC Acc651

rhiB Up TTTGGTACCATAACGCACGGAGTAGCCCCATGC Acc651 pVLT33 rhiB
Down TTTTTCTAGATCAGGACGCAGCCTTCAGCC Xbal

rhiC Up TTTTTCTAGACCTACGGGAGAAGAACGATCATGGACCG Xbal pVLT33_rhiC
Down TTTAAGCTTCTAGGCCTTGGCCTTGCCGG HindIIl

rhIAB Up TTGAATTCCATCGGCTACGCGTGAACACGG EcoR1 pVLT33 rhiAB
Down TTTTTCTAGATCAGGACGCAGCCTTCAGCC Xbal

PA1131-rhIC  Up TTTTTCTAGAAGGATTTCCTGTGTTCGCCGGGAG Xbal pVLT33_PA1131-rhiC
Down TTTAAGCTTCTAGGCCTTGGCCTTGCCGG HindIIl

rhiA*B Up TGGTCTCCGCGGCCTGGGGCGGT* - pVLT33 rhiA*B
Down ACCGCCCCAGGCCGCGGAGACCA® -

additional cloning of 74IC in pVLT33 rhIAB As above pVLT33 rhlABC

rhiA-up Up TTTGACTCCCCGTCGACACCCTCCATGACCATCAAATCGGACAAG  Ahdl P. aeruginosa ArhiA
Down AAACAATTGTTCACACCTCCCAAAAATTTTCGAACAGGCAAAC Munl

rhiA-dn Up AAACAATTGACCCTTGACCTGCGAAGACCCG Munl P. aeruginosa ArhiA
Down AAATTAATAAGGCTCCCAGTGGCGCG Asel

rhiC-up Up TTTGACTCCCCGTCCCGTCCTGGTCCTGGCGATGC Ahdl P, aeruginosa ArhiC
Down TTTCAATTGGTCTATCCGGTCCATGATCGTTCTTCTCCCG Munl

rhlC-up Up AAACAATTGTAGTCGGCGAAACGCATTCCCGC Munl P. aeruginosa ArhiC
Down AAATTAATGGCGCTTCACCGAGGCGTATCC Asel

#Underlined GCC codon was used for SI02A exchange of RhlA
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expression of rhl-genes. The cell-free culture supernatant was
prepared by centrifugation of the cells for 30 min at 2200xg
and 4 °C followed by filtration of the supernatant through a
cellulose-membrane filter with 0.2 um pore size (VWR
International, Darmstadt, Germany).

Production of rhamnolipids in P. aeruginosa mutant
strains

For generating P. aeruginosa rhl-mutant strains, the flanking
up- and downstream regions of 7//A and rhlIC were amplified
as described above using the primer pairs rhlA-up, rhlA-down,
rhIC-up, and rhIC-down, respectively (Table 1). PCR prod-
ucts were hydrolyzed with the restriction endonucleases Pvul
and MIul (for upstream regions) and MIul and Ncol (for down-
stream regions). The two products for each gene were ligated
into Pvul and Ncol restriction sites of pSUP202 (Simon et al.
1983), creating plasmids pSUP_rkhl/A and pSUP_rhlC.
Recombinant E. coli cells containing this vector and its deriv-
atives were selected by adding 10 pg/ml tetracycline to the
medium. An {2-gentamicin-cassette obtained by hydrolysis of
pBSL142 (Alexeyev et al. 1995) with MIul was subsequently
cloned into the plasmids pSUP_r#/A and pSUP_rhlC hydro-
lyzed with Mlul creating the plasmids pSUP_rh/A-Gm and
pSUP_rhlC-Gm, respectively. Recombinant E. coli cells con-
taining these plasmids were selected by adding 10 pg/ml gen-
tamicin to the medium. P. aeruginosa PAO1 was transformed
with the gene mutator plasmids by electroporation (Choi et al.
2006) and selected for gentamicin resistance and tetracycline
susceptibility indicating homologous recombination events
with a double crossing-over. For this purpose, 30 pg/ml gen-
tamicin or 100 pg/ml tetracycline were supplemented to agar-
plates and liquid cultures. The P. aeruginosa mutant strains
PAO1ArhIA and PAO1ArhIC were cultivated in phosphate-
limited protease peptone-glucose-ammonium salt medium
(PPGAS), containing 5 g/l glucose, 10 g/l peptone, 0.02 M
NH,4CI, 0.02 M KCl, 0.12 M Tris-HCI, and 0.0016 M MgSO,
adjusted to pH 7.2 (Zhang and Miller, 1992). The main cul-
tures of 10 ml medium in a 100 ml Erlenmeyer flask were
inoculated to an ODsgo of 0.05 from an overnight culture
and incubated at 37 °C and 150 rpm. Cell-free culture super-
natants were prepared by centrifugation of the cells for 30 min
at 2200xg and 4 °C followed by filtration of the supernatant
through a cellulose-membrane filter with 0.2 um pore size
(VWR International, Darmstadt, Germany).

Extraction of surface active compounds

For the extraction of thamnolipids and their precursors HAAs,
4 ml of the cell-free culture supernatants were transferred to a
new reaction tube and acidified with 40 pl of phosphoric acid
(80% (v/v)). To these solutions, 6 ml ethyl acetate were added,
the samples were mixed on a vortex shaker and centrifuged for

10 min at 2200xg. The upper ethyl acetate phases containing
rhamnolipids and their precursors were removed. The lower
phases were used for second extraction according to the same
procedure. The two extracts were combined for further
analysis.

For the detection of rhamnolipids using thin layer chroma-
tography (TLC), 1.25 ml and for quantification of
rhamnolipids and HAAs via HPLC-UV/Vis analysis 2 ml of
the extract were evaporated in the vacuum centrifuge.

Thin layer chromatography of rhamnolipids

The dried samples for TLC analysis were dissolved in 20 ul
ethanol and 10 pl of these solutions were spotted on silica 60
TLC plates (SIL-G, Macherey-Nagel, Diiren, Germany). As a
positive control, 10 pul of a 0.1% (w/v) rhamnolipid solution
(JBR425, Jeneil Biosurfactant Co., LCC, Saukville, USA)
containing mono- and di-thamnolipids were spotted onto each
TLC plate. A mixture of chloroform, methanol, and acetic
acid at a ratio of 65:15:2 (v/v/v) was used as mobile phase.
To visualize the rhamnolipids, a solution consisting of 0.15 g
orcinol-monohydrate, 8.2 ml sulfuric acid, and 42 ml distilled
water was sprayed on the TLC plates. The dried plates were
incubated at 110 °C for 10 min.

Quantification of rhamnolipids and HAAs
by HPLC-UV/Vis

Crystalline Rha-Rha-C;-C; standard was a gift from former
Hoechst AG (Frankfurt a. M., Germany). Rha-C;(-C;, and
C10-Ci0 (HAA) standards for HPLC analysis were prepared
and purified as described before (Trummler et al. 2003;
Magario et al. 2009). The (3-hydroxydecanoic acid (C,) stan-
dard was obtained from Sigma-Aldrich Chemie GmbH
(Steinheim, Germany). For derivatization, triethylamine and
4-bromophenacylbromide were used (Sigma-Aldrich Chemie
GmbH) like described by Schenk et al. (1995).

Phenacyl esters of rhamnolipids and (3-hydroxydecanoic
acids for HPLC analysis were obtained as described before
(Schenk et al. 1995) with minor changes. The analysis was
performed with a standard HPLC device (Agilent 1100 Series,
Agilent Technologies, Waldbronn, Germany) equipped with a
Supelcosil® LC-18 Octadecylsilyl (Supelco, Deisenhofen,
Germany) reverse phase column (3 mm x 150 mm x 5 pum)
at 30 °C. Components of the mobile phase were solution A
with 5% (v/v) methanol and solution B with 95% (v/v) meth-
anol in ultrapure water, respectively. To achieve separation, a
gradient of solution B from 80 to 100% was used according to
the following protocol: from # = 0 to £ = 17 min increase of
solution B from 80 to 100%, holding 100% solution B up to
t = 25 min and decrease back to 80% solution B until
¢t = 30 min, holding 80% solution B for 5 more min to equil-
ibrate. The injection volume was 10 pl. The flow rate was
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0.4 ml/min and analytes were monitored at 254 nm. Retention
times were 21.5 (+0.1) min for Rha-Rha-C;(-C,, 22.2 (£0.1)
min for Rha-C;(-C,, and 23.3 (£0.1) min for C;y-C;,.

Chemical analysis of rhamnolipids by HPLC-ESI-MS

For the identification of rhamnolipids via HPLC-ESI-MS,
the P. putida strain carrying pVLT33 rh/AB was cultivat-
ed in 1 1 cultures in 5 1 Erlenmeyer flasks and conditions
as described before. The rhamnolipids were purified after
Déziel et al. (1999) with some modifications. Cells were
removed by centrifugation (6740%g, 10 °C, 30 min). The
supernatant was acidified to pH 3 with 37% HCI and kept
at 4 °C and 80 rpm overnight. The precipitated
rhamnolipids were recovered by centrifugation (8280xg,
10 °C, 45 min) and dissolved in 15 ml acidified water (pH
3, adjusted with 37% HCI). The solution was extracted
three times with 15 ml ethyl acetate, the organic phases
were collected and evaporated under vacuum. The dried
rhamnolipids were dissolved in 15 ml of 0.05 M sodium
bicarbonate, acidified to pH 2 with 37% HCI and kept
overnight at 4 °C. The rhamnolipids were recovered by
centrifugation (4650xg, 4 °C, 60 min).

HPLC-MS experiments were carried out on an Agilent
1100 series binary HPLC system (Agilent Technologies,
Waldbronn, Germany), combined with a DAD (190
400 nm) and coupled with the triple quadrupole 4000
QTRAP™ mass spectrometer (AB SCIEX, Darmstadt,
Germany) equipped with a Turbolon spray source.

Separation was achieved on a ProntoSIL 120-C8-SH
(Bischoff Chromatography, Leonberg, Germany) column
(2 mm X 150 mm % 3 um) kept at 20 °C during analysis.
The gradient elution was done with deionized water with
0.1% (v/v) formic acid (solution A) and acetonitrile with
0.1% (v/v) formic acid (solution B) at a constant flow rate of
300 pl/min in the following manner: start with 60% solution B
isocratic for 4 min, from 4 to 24 min a linear increase from
60% solution B to 90% solution B, followed by a second
isocratic step (90% solution B for 10 min). The return to
60% solution B was performed in 1 min and 10 min; isocratic
(60% solution B) was used for the re-equilibration. The injec-
tion volume was 20 pl.

The MS was used in the negative EMS mode scanning
from 200 to 1000 Da. The parameters used were optimized
first performing a flow injection analysis (FIA) with a stan-
dard and led to the following parameter settings: IS —4500 V,
declustering potential (DP) —100 V, curtain gas (N,) 10 arbi-
trary units (au), source temperature 500 °C, nebulizer gas (N,)
50 au, and heater gas (N,) 20 au. Collision energy (CE) and
Q3-entry barrier were set to =5 V and 8 V, respectively, to
minimize fragmentation entering the LIT in the full scan
mode.
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For structural elucidation, MS/MS experiments were per-
formed in negative enhanced product ion (EPI) scan mode.
CE in the range between 30 and 70 V were used.

Results

Biosynthesis of HAAs and mono-rhamnolipids
in recombinant P. putida

Typical mono- and di-rhamnolipids contain two 3-
hydroxyfatty acid chains; however, thamnolipid congeners
with only one 3-hydroxyfatty acid chain were described, too
(Syldatk et al. 1985b; Déziel et al. 1999). Two different routes
for the biosynthesis of these mono-rhamno-mono-lipids were
suggested. The first is of anabolic character and proposes a
RhIB catalyzed transfer of a single ACP-activated 3-
hydroxyfatty acid to a dTDP-L-rthamnose molecule. The sec-
ond catabolic approach involves a hypothetic degradation step
of common mono-rhamno-di-lipids by an unknown hydrolyt-
ic enzyme.

To investigate the biosynthetic pathway for mono-rhamno-
mono-lipids, we used P. putida KT2440 for which we previ-
ously reported multiple advantages for heterologous
rhamnolipid production in comparison with P. aeruginosa
(Wittgens et al. 2011; Tiso et al. 2016). The fact that this strain
does not produce rhamnolipids itself simplifies the analysis of
different rhamnolipid species after the expression of P.
aeruginosa PAO1 genes involved in rhamnolipid
biosynthesis.

For this purpose, the pVLT33 rhlA, pVLT33 rhiB, and
pVLT33 rhlIAB expression vectors, respectively carrying the
single 7h[A gene, rhiB gene, or the rhIAB operon, were used
(Table 1). The heterologous expression of the single r4/A or
rhiB genes in P. putida KT2440 did not yield detectable
amounts of rthamnolipids after 24 h (Fig. 2a). However, as
expected, the bacteria expressing rh/A secreted up to
12.0 pmol/l HAAs within 24 h confirming known catalytic
activity of produced RhIA as HAA synthase (Fig. 2b).
Furthermore, the production of 8.5 pmol/l mono-
rhamnolipids was observed by expressing the r4/AB operon
in P. putida for 24 h confirming that Rh1B was expressed in its
enzymatically active form as well (Fig. 2¢).

The chemical analysis of the secreted mono-rhamnolipids
produced by recombinant P. putida expressing rhlAB by
HPLC-ESI-MS revealed six different mono-rhamnolipid con-
geners containing two 3-hydroxyfatty acids with chain length
between Cg-C; and C;,-C;, and a predominant C;o-C; spe-
cies, which correlates with the composition of rhamnolipids
known from P. aeruginosa (Abdel-Mawgoud et al. 2010).
Beside the predominant mono-rhamno-di-lipids, also two
mono-rhamno-mono-lipid congeners (Rha-Cg and Rha-C,)
were detectable.
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RhlA and RhiIB function independently from each other

Surprisingly, P. putida expressing rhlAB produced also mono-
rhamno-mono-lipids while these compounds were not detect-
ed in the supernatant of P. putida expressing only the rhlB
gene, although the function of RhIB for transfer of a single
3-hydroxyacyl-ACP to a dTDP-L-rhamnose molecule has
been suggested (Soberén-Chavez et al. 2005). In the literature
RhIA and RhIB are described as two subunits of
rhamnosyltransferase I forming a heterodimer to build the
active enzyme complex (www.ncbi.nlm.nih.gov; Ochsner
et al. 1994a; Winsor et al. 2016). We examined the role of
this RhlIAB complex for the biosynthesis of rhamnolipids
and could show that RhlA can exert its function
independently of RhIB (Fig. 2b). In addition, our results reveal
that RhIB was active after expression of the 72/AB operon but
not as single protein in P. putida (Fig. 2¢). The fact that RhIB
was active in the presence of RhlA but not when r4/A was not
co-expressed opened the question if the function of RhlA is to
stabilize RhIB through protein-protein interactions or if RhlA
indirectly affect the function of RhIB through the supply of
HAAs as substrate for RhIB.

To investigate the hypothesis that RhIB requires RhlA for
its stabilization, a catalytically inactive variant of RhlA was
constructed and expressed together with RhiB. The active site
of RhIA was identified by structural homology modeling
using the S. lividans chloroperoxidase L, a protein of the o/

[3-hydrolase superfamily, as a template (Fig. 3a). The residues
Ser98, Asp228, and His257 described as the catalytic triad
residues of chloroperoxidase L (Hofmann et al. 1998) were
structurally conserved with Ser102, Asp223, and His251 of
RhIA, respectively (Fig. 3b). Thus, we substituted the predict-
ed catalytic serine of RhlA at position 102 by alanine. Serine
to alanine mutations are generally used to inactivate serine
hydrolases because alanine cannot take over the nucleophile
function of serine as a substitute, but maintains the structural
integrity of the protein (Kovacic et al. 2013).

Expression of the ##/A*B operon, encoding the inactive
RhlA* variant and wild-type RhIB, in P. putida did not result
in the production neither of HAAs nor of any mono-
rhamnolipid species (data not shown). This confirmed
Ser102 being the active site residue of RhlA as no HAAs were
synthesized. Furthermore, this result is in conflict with the
hypothesis of a functional RhIAB complex, as in this strain
inactive RhlA* can form a complex with RhIB; however,
RhIB is unable to produce mono-rhamnolipids.
Conclusively, RhIB function is dependent on supply of pre-
cursors by RhlA rather than on interaction with RhlA.

Synthesis of mono-rhamnolipids by RhIB after uptake
of extracellular HAAs as precursors

To verify that RhIB catalyzed biosynthesis of mono-
rhamnolipids is dependent on the supply of HAA precursors
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Fig. 2 Rhamnolipids and HAAs produced by recombinant P. putida. a
Thin layer chromatography (TLC) of extracts from single #4/A or rhiB
expression shows no detectable amounts of rhamnolipids after 24 h
(HPLC results not shown). b HPLC analysis of HAAs reveals their pro-
duction in a rhlA expressing P. putida strain. ¢ HPLC analysis of HAAs
(squares) and mono-rhamnolipids (friangles) and TLC of P. putida

cultures carrying rh/AB operon. Rhamnolipids are visible as brown bands
on TLC plates as in the rhamnolipid-standard. Samples extracted from
P, putida cultures show an additional violet spot descending from IPTG as
in extracts of IPTG containing LB media (IPTG control). Samples were
taken every 6 h for a period of 24 h from three independent cultures
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synthesized by RhlIA, experiments with conditioned media
containing HAAs were performed. The conditioned media
were obtained by mixing cell-free supernatant of P. putida
cultures expressing the r/#/A gene responsible for HAA syn-
thesis with the same volume of fresh LB medium. HPLC
results revealed that P. putida expressing rhIB and P. putida
expressing the inactive ##/A*B operon cultivated in condi-
tioned medium produced comparable amounts (4.5 pmol/l
for 7hIB and 4.0 pumol/l for rh/A*B) of extracellular mono-
rhamnolipids within 24 h of incubation (Fig. 4a, b). Time
course experiments showed that at the same time, the concen-
tration of HAAs decreased from 20.5 to 1.5 umol/l and from
22.5 to 2.0 pmol/l for strains expressing »#/B and rhlA*B,
respectively (Fig. 4a, b). These results point out that HAAs
synthesized by P. putida and provided in the form of the con-
ditioned medium serve as the substrate for RhiB. Moreover,
the expression of catalytically inactive RhlA does not signif-
icantly affect the efficiency of RhIB to synthesize mono-
rhamnolipids. Thus, we conclude that RhIB may in fact cata-
lyze the formation of the (3-glycosidic bond between HAA
and dTDP-L-rhamnose independently on the presence of
RhIA but is dependent on RhIA through the supply of HAAs.

CpoL

———-GTYTTSDETNIFYKDWEPR-DGLP
RhlA RRESLLMYSVCKELRVHVERVEQDPGRST]

Synthesis of di-rhamnolipids by RhIC using extracellular
mono-rhamnolipids as precursors

Our results demonstrate for the first time that P. putida can
take up exogenous HAAs for the synthesis of mono-
rhamnolipids. Therefore, we tested if mono-rhamnolipids
can be imported by P. putida cells as well and if they flow
into the di-thamnolipid biosynthesis pathway, which relies on
RhIC. In addition, we investigated the function of PA1131,
which is organized in a bicistronic operon together with rA/C
and has been supposed to play a role in thamnolipid secretion
(Rahim et al. 2001), but experimental evidences were current-
ly missing.

For this purpose, P. putida carrying pVLT33 rhlC or
pVLT33 PA1131-rhiC (Table 1) were cultivated in condi-
tioned medium containing mono-rhamnolipids. The condi-
tioned medium was obtained by mixing cell-free supernatants
of P. putida expressing the rhlAB operon, which produces
mono-rthamnolipids, with the same volume of fresh LB medi-
um. HPLC analysis showed that the amount of the mono-
rhamnolipids in the culture medium of P. putida expressing
rhIC decreased from 19.5 to 8.5 umol/l, while the amount of
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*

CpoL

RhlA [VMAF

CpolL
RhlA

CpolL
RhlA

Fig. 3 Identification of the catalytic triade of RhIA. a The three-
dimensional structure of RhlA from P. aeruginosa was modeled using
the chloroperoxidase L (CpoL; PDB code: 1A88) from Streptomyces
lividans as template. Despite low sequence identity (14%), the catalytic
triad Ser, Asp, and His (indicated by an asterisk underneath the se-
quences) are strongly conserved among these two proteins. Sequences
identical and similar were shaded in black and yellow,
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respectively. b Structural superimposition of CpoL (brown) and
RhIA (blue) shows a high conservation of secondary structure
elements. The catalytic triad of CpoL (Ser96, His255 and
Asp226) and the putative catalytic triad of RhlIA (Serl02,
His251, and Asp223) are structurally strongly conserved. Dashed
lines indicate catalytically important interactions of the active site
residues
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Fig. 4 Production of mono-rhamnolipids by recombinant P. putida in
HAA containing conditioned medium. P. putida strains expressing
single rA[B (a) or the rhlA*B operon (b), containing inactive RhlA,
were cultivated in HAA containing conditioned medium, obtained from
a rhlA expressing P. putida strain. Extracts were analyzed via HPLC
revealing HAAs (squares) and mono-rhamnolipids (friangles) and thin

di-rhamnolipids reached 2.5 pmol/l during 24 h of cultivation
(Fig. 5a). The P. putida strain expressing the PAl131-rhiC
operon was able to uptake mono-rhamnolipids and synthe-
sized di-thamnolipids with similar efficiency as the P. putida
expressing only rhlC (Fig. 5b). However, cultivation of P.
putida expressing a biosynthetic 72/ABC operon in fresh LB
medium resulted in a mixture consisting of 3.0 pmol/l mono-
rhamnolipids and 3.5 pmol/l di-thamnolipids (Fig. 5¢).

Our results demonstrate that P. putida indeed can take up
mono-rhamnolipids from the medium and use them as a pre-
cursor for the subsequent synthesis of di-rhamnolipids.
Moreover, under the experimental conditions tested here, the
protein of unknown function PA1131 has neither quantitative
nor qualitative influence on rhamnolipid biosynthesis and
does not appear to be involved in excretion of rhamnolipids.

P. aeruginosa can also import extracellular
mono-rhamnolipids as precursors for RhlC-dependent
di-rhamnolipid synthesis

The discovery of rhamnolipid precursor uptake by P. putida
motivated us to examine if similar processes can be observed
for the native rhamnolipid producer P. aeruginosa.
Cultivating P. aeruginosa PAO1ArhIC, which lacks
rhamnosyltransferase II RhIC, but still expresses rhlAB, in
PPGAS medium leads to the production of mono-
rhamnolipids (Fig. 6). The obtained mono-rhamnolipid con-
taining conditioned medium mixed with an equal volume of
fresh PPGAS was used for the cultivation of P. aeruginosa
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layer chromatography. Rhamnolipids are visible as brown bands on TLC
plates as in the rhamnolipid-standard. Samples extracted from P. putida
cultures show an additional violet spot descending from IPTG as in ex-
tracts of IPTG containing LB media (IPTG control). Samples were taken
every 6 h for a period of 24 h from three independent cultures

PAO1ArhIA. Our results demonstrate that this 72/A mutant
strain, which still expresses functional thamnosyltransferase
IT RhIC, transforms the externally provided mono-
rhamnolipids into di-thamnolipids after resumption (Fig. 6).
However, based on rh/AB knock-out, this mutant strain is not
able to synthesize any kind of rhamnolipids by itself cultivated
in PPGAS medium (Fig. 6). In this experiment, the di-
rhamnolipids of the standard showed an untypical mobility
on the TLC plate (Fig. 6) in comparison to the di-
rhamnolipids of the sample. This commercial rhamnolipid-
standard was obtained with only minor information about or-
igin, purification procedure, or ingredients except the
contained rhamnolipid species. The different ingredients pos-
sibly influence the mobility of di-rhamnolipids under certain
conditions. However, the R, value of di-rhamnolipids was
identical in all sample lanes during this work at 0.27
representing di-rhamnolipids with a predominant Rha-Rha-
C10-Cio species, which was verified by HPLC-ESI-MS
analysis.

Discussion

The biosynthesis of mono-rhamnolipids requires the two en-
zymes RhlA and RhIB, which are encoded by genes organized
in the bicistronic 7#/AB operon. These enzymes according to
presently accepted hypotheses fulfill their functions in the
form of a heterodimeric rhamnosyltransferase I enzyme com-
plex (Ochsner et al. 1994a). Hence, in the Pseudomonas
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Fig.5 Production of di-rhamnolipids by recombinant P. putida in mono-
rhamnolipid containing conditioned medium. P. putida strains expressing
single 7AlC (a) or the PA1131-rhiIC operon (b) were cultivated in mono-
rhamnolipid containing conditioned medium, obtained from a r/#/AB ex-
pressing P. putida strain. ¢ For comparison, P. putida expressing the
biosynthetic #4#/ABC operon cultivated in fresh LB media. Extracts were
analyzed via HPLC revealing HAAs (squares), mono-rhamnolipids

database (Winsor et al. 2016), RhlA and RhIB are respectively
annotated as chain A and chain B of rhamnosyltransferase I.
We could show that in P. putida RhlA with its 3-hydroxyacyl-
ACP:3-hydroxyacyl-ACP O-3-hydroxyacyltransferase activi-
ty is responsible for the production of the thamnolipid precur-
sor molecule HAA and is not dependent on the expression of

Mono-
rhamnolipid

-_

Di-
rhamnolipid

Rhamnolipid-
standard
P. aeruginosa ArhlIA

P. aeruginosa ArhIC
P. aeruginosa ArhlIA

with provided mono-RL

Fig. 6 Production of rhamnolipids by P. aeruginosa rhl-mutant strains.
Thin layer chromatography was performed to analyze rhamnolipid
biosynthesis by P. aeruginosa ArhlA and P. aeruginosa ArhlC
cultivated in PPGAS medium. In addition, P. aeruginosa ArhlA was
cultivated in mono-rhamnolipid containing conditioned medium, obtain-
ed from a P. aeruginosa ArhIC culture. Samples were taken after 24 h.
Rhamnolipids are visible as brown bands on TLC plates as in the
rhamnolipid-standard
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(triangles), and di-thamnolipids (circles) and thin layer chromatography.
Rhamnolipids are visible as brown bands on TLC plates as in the
rhamnolipid-standard. Samples extracted from P. putida cultures show
an additional violet spot descending from IPTG as in extracts of IPTG
containing LB media (IPTG control). Samples were taken every 6 h for a
period of 24 h from three independent cultures

rhiIB, what is also known from experiments with E. coli as a
model host organism (Lépine et al. 2002; Déziel et al. 2003;
Zhu and Rock 2008). However, if the hypotheses were true
that RhIB could catalyze the acylation of dTDP-L-rhamnose
with one ACP activated 3-hydroxyfatty acid (Soberdn-
Chavez et al. 2005), the production of mono-rhamno-mono-
lipids were expected at least, but single expression of the 74/B
gene in P. putida did not result in any rhamnolipid production.
The same result was achieved when the mutagenized r#/A*B
operon containing an inactive RhlA was expressed. RhlA in-
activation was done in order to separate the postulated dual
functionality of this protein as an enzyme and as a stabilizing
function for RhIB in the postulated complex. However, since
extracellularly provided HA As are a substrate for rhamnolipid
biosynthesis in P. putida expressing the single r4IB gene or the
rhIA*B operon, we conclude that RhIB is active as a single
enzyme and is most likely not a subunit of the
rhamnosyltransferase I enzyme complex. Thus, RhIB fulfills
the role as rhamnosyltransferase I independent of the assis-
tance of RhlA for its stabilization, but strongly requires the
RhIA product HAA as substrates for its own activity.

Given that RhIB cannot use single 3-hydroxyfatty acids for
the synthesis of mono-rhamno-mono-lipids, these relatively
rare thamnolipid species containing only one fatty acid chain
then have to descend from hydrolysis of typical and more
abundant rhamnolipid species containing the normal dimer
of two 3-hydroxyfatty acids. Since mono-rhamno-mono-
lipids also occur in P. putida, it is reasonable to suspect that
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P. putida as well as P. aeruginosa contain at least one enzy-
matic activity, which is able to hydrolyze the ester bond be-
tween the two 3-hydroxyfatty acids of rhamnolipids. Taking
into account the typical chain lengths of fatty acids of 8 to 14
carbon atoms, the most probable enzymes for this activity can
be expected to belong to the esterase or lipase family of hy-
drolases. P. aeruginosa, for which these rhamnolipid species
were first described (Syldatk et al. 1985a; Déziel et al. 1999),
produces several lipolytic enzymes (Wilhelm et al. 1999;
Lesci¢ ASler et al. 2010; Funken et al. 2011; Kovaci¢ et al.
2013; Kovacic et al. 2016). However, 80 putative are predict-
ed for P. aeruginosa (Jaeger and Kovacic 2014) and about half
as many for P. putida (Nelson et al. 2002; Winsor et al. 2016).
The identification of the individual enzymes responsible for
modification of rhamnolipids by processing of fatty acids will
be the aim of a further study and may provide a tool to enlarge
the product range for designer rhamnolipids containing hydro-
phobic moieties composed of uneven numbers of fatty acids.
Since rhamnolipid species containing, e.g., only one fatty acid
feature an entirely different chemical proportion between the
hydrophilic and hydrophobic molecule domain in comparison
to typical rhamnolipids, they are considerably different and
thus highly interesting for various novel applications, because
their characteristics strongly affect the physicochemical prop-
erties of surfactants (Winsor 1954; Salager et al. 1979; Acosta
et al. 2008).

Furthermore, extracellularly provided mono-rhamnolipids
were converted to di-rhamnolipids by RhIC in recombinant P.
putida. This reaction could be observed upon expression of
rhIC as a single gene and also by expression of the PA//31-
rhlC operon. The gene PA/131 was predicted to probably
encode a transporter of the major facilitator superfamily
(MFS) and the genetically organization in an operon together
with 7hIC consequently led to the hypothesis that the resulting
protein might be involved in rhamnolipid production and/or
secretion (Rahim et al. 2001). However, the additional expres-
sion of this gene had no influence on the rhamnolipid produc-
tion or secretion in the recombinant P. putida strains. In addi-
tion, the genome of P. putida (Nelson et al. 2002) does not
contain any gene for a homologous protein that could substi-
tute or complement the suggested role as a membrane trans-
porter, suggesting that PA1131 has probably a role different
from rhamnolipid transport and thus may be, if at all, more
indirectly linked to rhamnolipid production.

Furthermore, this is the first report that exogenously
added HA As and mono-rhamnolipids can cross both mem-
branes of the original host P. aeruginosa and of the heterol-
ogous host P. putida to reach the cytoplasm, where all the
proteins responsible for rhamnolipid biosynthesis are locat-
ed (Rahim et al. 2001; Winsor et al. 2016). This suggests
that beside the yet unknown exporter for HAAs and
rhamnolipids, there probably may exist an importer system
for the resumption of these compounds. However, the

mechanism behind this retrograde transport is currently
completely unknown as are candidate proteins for this func-
tionality. A simple diffusion of the tensioactive molecules
seems rather unlikely because their transport by diffusion
would require close and direct interactions of HAA and
rhamnolipids with the lipid bilayers of the cell membranes.
One function of rhamnolipids is to emulsify hydrophobic
substrates like long-chain hydrocarbons and oil in the extra-
cellular milieu (Zhang and Miller 1992; Patel and Desai
1997) or to bind to the cell surface and to modify its overall
hydrophobicity, which in turn leads to the enhanced uptake
of these substrates into the cell (Zhang and Miller 1994;
Noordman and Janssen 2002). In this process, below its
critical micelle concentration (CMC), the hydrophilic moi-
ety of rhamnolipids interacts with O-antigen component of
lipopolysaccharides (LPS) in the outer membrane of Gram-
negative bacteria to increase its hydrophobicity (Zhong
et al. 2008). Above the CMC, rhamnolipids remove LPS
from the outer membrane, which still leads to an increase
in hydrophobicity due to the resulting lack of polar sugar
residues on the cell surface (Al-Tahhan et al. 2000; Sotirova
et al. 2009). It is still speculative, if rhamnolipids only per-
mit the interaction between cell surface and hydrophobic
substrates or if the cells can absorb larger adducts of sub-
strate molecules or particles emulsified by micelles of
rhamnolipids or HAAs, which also show tensioactive prop-
erties (Lépine et al. 2002). Speculative, but possibly
rhamnolipid producing organisms use a cycle of HAA and
rhamnolipid secretion, emulsification of hydrophobic com-
pounds, and their reabsorption into the cell to metabolize the
encased substrate and to recycle the surfactants.

Surprisingly, the decreasing amounts of HAAs and
mono-rhamnolipids presented in the experiments do not
quantitatively reflect the increasing amount of mono- and
di-rhamnolipids, respectively. This difference indicates that
P. putida can actively degrade the surfactants and is proba-
bly able to metabolize the breakdown products of these
molecules. The hypothetical lipolytic enzyme responsible
for the hydrolysis of rhamnolipids and probably also free
HAAs into free fatty acids and mono-rhamno-mono-lipids
may be also the catalyst in this process. For complete deg-
radation of the latter, a second enzyme similar to the
naringinase from Aspergillus niger (Trummler et al. 2003)
would be essentially required to hydrolyze the 3-glycosidic
bond and release the rhamnose moiety. The identification of
these enzymes will be one topic of further investigations to
step forward to understand the complete biochemistry of
rhamnolipid production and metabolism, to create a toolbox
of enzymatic activities on HA As and rhamnolipids and—in
perspective—to open novel strategies based on these en-
zymes for the production of tailor made rhamnolipid mole-
cules with specific properties for biomedical and conven-
tional applications in biotechnology and industry.
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