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Nuclear clustering describes the appearance of structures resembling smaller nuclei such as alpha particles
(4He nuclei) within the interior of a larger nucleus. While clustering is important for several well-known exam-
ples, little is known about the general nature of clustering in nuclei. In this letter we present lattice Monte Carlo
calculations based on chiral effective field theory for the ground states of helium, beryllium, carbon, and oxygen
isotopes. By computing model-independent measures that probe three- and four-nucleon correlations at short
distances, we determine the effective number of alpha clusters in any nucleus as well as their shape compared to
alpha particles in vacuum. We also introduce a new computational approach called the pinhole algorithm, which
solves a long-standing deficiency of auxiliary-field Monte Carlo simulations in computing density correlations
relative to the center of mass. We use the pinhole algorithm to determine the proton and neutron density dis-
tributions and the geometry of cluster correlations in 12C, 14C, and 16C. The structural similarities among the
carbon isotopes suggest that 14C and 16C have excitations analogous to the well-known Hoyle state resonance
in 12C [1, 2].

PACS numbers: 21.10.Dr, 21.30.-x, 21.60.De, 21.60.Gx

There have been many exciting recent advances in ab initio nuclear structure theory [3–10] which link nuclear forces to nuclear
structure in impressive agreement with experimental data. However, we still know very little about the quantum correlations
among nucleons that give rise to nuclear clustering and collective behavior. The main difficulty in studying alpha clusters in
nuclei is that the calculation must include four-nucleon correlations. Unfortunately in many cases this dramatically increases
the amount of computer memory and computing time needed in calculations of heavier nuclei. Nevertheless there is promising
work in progress using the symmetry-adapted no-core shell model [11], antisymmetrized molecular dynamics [12], fermionic
molecular dynamics [13], the alpha-container model [14], Monte Carlo shell model [15], and Green’s function Monte Carlo
[16].

Lattice calculations using chiral effective field theory and auxiliary-field Monte Carlo methods have probed alpha clustering
in the 12C and 16O systems [17–20]. However these lattice simulations have encountered severe Monte Carlo sign oscillations
in cases where the number of protons Z and number of neutrons N are different. In this work we solve this problem by using
a new leading-order lattice action that retains a greater amount of symmetry, thereby removing nearly all of the Monte Carlo
sign oscillations. The relevant symmetry is Wigner’s SU(4) spin-isospin symmetry [21], where the four nucleon degrees of
freedom can be rotated as four components of a complex vector. Previous attempts in taking this approach had failed due to the
tendency of nuclei to overbind in larger nuclei. However recent progress has uncovered important connections between local
interactions and nuclear binding as well as the significance of the alpha-alpha interaction [10, 22, 23]. Following this approach,
we have constructed a leading-order lattice action with highly suppressed sign oscillations and which reproduces the ground-
state binding energies of the hydrogen, helium, beryllium, carbon, and oxygen isotopes to an accuracy of 0.7 MeV per nucleon
or better. We use auxiliary-field Monte Carlo simulations at leading order in chiral effective field theory with a spatial lattice
spacing of 1.97 fm and lattice time spacing 1.97 fm/c. The lattice results are shown in Fig. 1 in comparison with the observed
ground state energies. The full details of the lattice interaction, nucleon-nucleon phase shifts, simulation methods, and results
are given in the Supplemental Materials.

Let ρ(n) be the total nucleon density operator on lattice site n. Similarly we define ρp(n) as the proton density and ρn(n) as
the neutron density. We will use short-distance three- and four-nucleon operators as probes of the nuclear clusters. To construct
a probe for alpha clusters, we define ρ4 as the expectation value of : ρ4(n)/4! : summed over n. The :: symbols indicate
normal-ordering where all annihilation operators are moved to the right and all creation operators are moved to the left. For
nuclei with even Z and even N , there are likely no well-defined 3H or 3He clusters since their formation is not energetically
favorable. Therefore we can use short-distance three-nucleon operators as a second probe of alpha clusters. We define ρ3 as the
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FIG. 1: We show the ground state energies versus number of nucleons A for the hydrogen, helium, beryllium, carbon, and oxygen isostopes.
The errors are one-standard deviation error bars associated with the stochastic errors and the extrapolation to an infinite number of time steps.
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expectation value of : ρ3(n)/3! : summed over n. A 3H or 3He cluster may form in nuclei with odd Z or odd N . In this case
we define ρppn and ρnnp as the sum over n of the expectation values of : ρ2p(n)ρn(n)/2 : and : ρ2n(n)ρp(n)/2 : respectively.
We use the difference ρppn − ρnnp as a probe of a possible 3H or 3He cluster. We can then define ρ3 as the minimum of 2ρppn
and 2ρnnp. The combinatorial factor of 2 is needed to match the previous definition for ρ3 when ρppn and ρnnp are equal. Since
this quantity is unaffected by the three-nucleon cluster, it serves again as a second probe for alpha clusters. As we consider only
nuclei with even Z and even N here, we focus on ρ3 and ρ4 for the remainder of the discussion.

Due to divergences at short distances, ρ3 and ρ4 will depend on the short-distance regularization scale, which in our case is
the lattice spacing. However the regularization-scale dependence of ρ3 and ρ4 does not depend on the nucleus being considered.
Therefore if we let ρ3,α and ρ4,α be the corresponding values for the alpha particle, then the ratios ρ3/ρ3,α and ρ4/ρ4,α are free
from short-distance divergences and are model-independent quantities up to contributions from higher-dimensional operators in
an operator product expansion. We have computed ρ3 and ρ4 for the helium, beryllium, and carbon isotopes. As our leading-
order interactions are invariant under an isospin mirror flip that interchanges protons and neutrons, we focus here on neutron-rich
nuclei. The results for ρ3, ρ4, ρ3/ρ3,α and ρ4/ρ4,α are presented in Table I. The values for ρ3 and ρ4 are given in dimensionless
lattice units. As we might expect, the values for ρ3 and ρ4 are roughly the same for the different neutron-rich isotopes of each
element.

Since ρ4 involves four nucleons, it couples to the center of the alpha cluster while ρ3 gets a contribution from a wider portion
of the alpha-cluster wave function. Therefore, if we compute the ratio of ρ4/ρ4,α to ρ3/ρ3,α, a value larger than one corresponds
to more compact alpha clusters than in vacuum, and a value less than one corresponds to more diffuse alpha clusters. In Table I
we observe that the ratio of ρ4/ρ4,α to ρ3/ρ3,α is very close to one whenN is comparable to Z, but the ratio gradually decreases
as the number of neutrons is increased. This indicates swelling of the alpha clusters as the system becomes saturated with excess
neutrons.

We denote the number of alpha clusters as Nα. A simple counting of protons tells us that Nα = 1 for neutron-rich helium,
Nα = 2 for neutron-rich beryllium, and Nα = 3 for neutron-rich carbon. However the alpha clusters are immersed in a complex
many-body system where nucleons of the same type are interchangeable. It is therefore useful to also define an “effective
number” of alpha clusters that takes into account possible rearrangements of the nucleons into different alpha-cluster groupings.
Since ρ3 is less sensitive than ρ4 to the detailed shape of the alpha clusters, we use ρ3/ρ3,α to give a rough estimate of the
effective number of alpha clusters. If properly defined, the effective number of alpha clusters should be greater than or equal to
Nα. A value equal to Nα indicates that the alpha clusters are behaving as indivisible objects, and the nucleus can be regarded as
a compound fluid of alpha particles and neutrons. If the effective number is significantly greater than Nα, then the description
in terms of individual alpha clusters breaks down and the system behaves more as a nuclear liquid of protons and neutrons. As
the systems we consider are finite, this transition as a function of N and Z will be a smooth crossover.

We see in Table I that ρ3/ρ3,α is close to one for 6He and 8He. This is expected since the extra neutrons in these halo nuclei
have relatively little binding energy. For the beryllium isotopes, the value of ρ3/ρ3,α is about 20% higher than the simple count
Nα = 2 for 8Be, 10Be, and 12Be, and the excess rises to about 35% for 14Be. For the carbon isotopes, the excess is about
25% for 12C and rises to a maximum of about 50% excess near the drip line. So the description in terms of alpha particles and
neutrons remains quite good for the beryllium isotopes and 12C. For the neutron-rich carbon isotopes, the description in terms of
alpha particles and neutrons degrades somewhat as more neutrons are added. We note that there is ample experimental evidence
for the cluster properties of the neutron-rich beryllium and carbon isotopes [24–27].

Despite the many computational advantages of auxiliary-field Monte Carlo methods, one fundamental deficiency is that the
simulations involve quantum states that are superpositions of many different center-of-mass positions. Therefore density distri-
butions of the nucleons cannot be computed directly. To solve this problem we have developed a new method called the pinhole
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TABLE I: We list ρ3, ρ4, ρ3/ρ3,α and ρ4/ρ4,α for the helium, beryllium, and carbon isotopes. The error bars denote one standard deviation
errors associated with the stochastic errors and the extrapolation to an infinite number of time steps.

Nucleus ρ3 ρ4 ρ3/ρ3,α ρ4/ρ4,α
4He 0.529(4) 0.0735(8) 1 1
6He 0.546(5) 0.072(1) 1.03(1) 0.98(2)
8He 0.510(6) 0.058(1) 0.96(1) 0.78(2)
8Be 1.253(8) 0.181(2) 2.37(2) 2.46(4)
10Be 1.25(2) 0.163(2) 2.36(4) 2.22(4)
12Be 1.25(3) 0.15(1) 2.36(6) 2.0(1)
14Be 1.414(7) 0.176(5) 2.67(2) 2.39(7)
12C 2.03(2) 0.290(6) 3.83(5) 3.95(9)
14C 2.21(4) 0.30(1) 4.17(9) 4.1(2)
16C 2.31(3) 0.32(2) 4.37(6) 4.4(2)
18C 2.25(1) 0.26(2) 4.24(4) 3.6(3)
20C 2.39(2) 0.27(3) 4.51(5) 3.7(4)
22C 2.27(2) 0.28(3) 4.29(9) 3.8(4)

algorithm. The pinhole algorithm behaves a bit like Maxwell’s demon. An opaque screen is placed at the middle time step
with pinholes bearing spin and isospin labels that allow nucleons with the corresponding spin and isospin to pass. We use A
pinholes for a simulation of A nucleons, and the locations as well as the spin and isospin labels of the pinholes are updated by
Monte Carlo importance sampling. From the simulations, we obtain the expectation value of the normal-orderedA-body density
operator : ρi1,j1(n1) · · · ρiA,jA(nA) :, where ρi,j is the density operator for a nucleon with spin i and isospin j.

Using the pinhole algorithm, we have computed the proton and neutron densities for the ground states of 12C, 14C, and 16C.
In order to account for the nonzero size of the nucleons, we have convolved the point-nucleon distributions with a Gaussian
distribution with root-mean-square radius 0.84 fm, the charge radius of the proton [28]. The results are shown in Fig. 2 along
with the experimentally observed proton densities for 12C and 14C [29], which we define as the charge density divided by the
electric charge e.

From Fig. 2 we see that the agreement between the calculated proton densities and experimental data for 12C and 14C is rather
good. We show data for Lt = 7, 9, 11, 13, 15 time steps. The fact that the results have little dependence Lt means that we are
seeing ground state properties. As we increase the number of neutrons and go from 12C to 16C, the shape of the proton density
profile remains roughly the same. However there is a gradual decrease in the central density and a broadening of the proton
density distribution. We see also that the excess neutrons in 14C and 16C are distributed fairly evenly, appearing in both the
central region as well as the tail.

We now study the alpha-cluster structures of 12C, 14C, and 16C in more detail. In order to probe the alpha cluster geometry,
we use the fact that there is only one spin-up proton per alpha cluster. Using the pinhole algorithm, we consider the triangular
shapes formed by the three spin-up protons in the carbon isotopes. This correlation function is free of short-distance divergences,
and so, up to the contribution of higher-dimensional operators, it provides a model-independent measure that serves as a proxy
for the geometry of the alpha-cluster configurations.

The three spin-up protons form the vertices of a triangle. When collecting the lattice simulation data, we rotate the triangle
so that the longest side lies on the x-axis. We also rescale the triangle so the longest side has length one, and flip the triangle, if
needed, so that the third spin-up proton is in the upper half of the xy-plane. Histograms of the third spin-up proton probability
distributions for 12C, 14C, and 16C are plotted in Fig. 3 using the data at Lt = 15 time steps. The data for other values of Lt
are almost identical. There is some jaggedness due to the discreteness of the lattice, but we see quite clearly that the histograms
for 12C, 14C, and 16C are very similar. While there is some increase in the overall radius of the nucleus, the rescaled cluster
geometry of the three carbon isotopes remain largely the same. In each case we see that there is a strong preference for triangles
where the largest angle is less than or equal to 90 degrees.

Given the rich cluster structure of the excited states of 12C, this raises the interesting possibility of similar cluster states
appearing in 14C and 16C. In particular, the bound 0+2 state at 6.59 MeV above the ground state of 14C may be a bound-state
analog to the Hoyle state resonance in 12C at 7.65 MeV. It may also have a clean experimental signature since low-lying neutron
excitations are suppressed by the shell closure at eight neutrons. There is also a bound 0+2 in 16C, however in this case one
expects low-lying two-neutron excitations to be important, thereby making the analysis more complicated.

In order to analyze what we are seeing in the lattice data, we can make a simple Gaussian lattice model of the distribution of
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FIG. 2: Plots of the proton and neutron densities for the ground states of 12C, 14C, and 16C versus radial distance. We show data for
Lt = 7, 9, 11, 13, 15 time steps. We show 12C in panel a, 14C in panel b, and 16C in panel c. The errors are one-standard deviation error bars
associated with the stochastic errors. For comparison we show the experimentally observed proton densities for 12C and 14C [29].
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FIG. 3: The two red spheres with arrows indicate the first two spin-up protons, and the line connecting them is the longest side of the triangle.
We show the third spin-up proton probability distribution in 12C in panel a, 14C in panel b, and 16C in panel c. The results are computed at
Lt = 15 time steps.

the spin-up protons. We consider a probability distribution P (~r1, ~r2, ~r3) on our lattice grid for the positions of the protons ~r1,
~r2, and ~r3. We take the probability distribution to be a product of Gaussians with root-mean-square radius 2.6 fm (charge radius
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of 14C) and unit step functions which vanish if the magnitude of ~r1 − ~r2, ~r2 − ~r3, or ~r3 − ~r1 is smaller than 1.7 fm (charge
radius of 4He). We can factor out the center-of-mass distribution of the three spin-up protons and recast the Gaussian factors as
a product of Gaussians for the separation vectors ~r1 − ~r2, ~r2 − ~r3, and ~r3 − ~r1 with root-mean-square radius 4.5 fm. We show
the third spin-up proton probability distribution corresponding to this model in Fig. 4. Despite the simplicity of this model with
no free parameters, we note the good agreement with the lattice data for 12C, 14C, and 16C. The only discrepancy is that the
model overpredicts the probability of producing obtuse triangular configurations. This indicates that there are some additional
correlations between the clusters that go beyond this simple Gaussian lattice model.

FIG. 4: The two red spheres with arrows indicate the first two spin-up protons, and the line connecting them is the longest side of the triangle.
We show the third spin-up proton probability distribution using a simple Gaussian lattice model of the distribution of the spin-up protons.

In this letter we have presented a number of novel approaches to computing and quantifying clustering in nuclei. We hope
that this work may help to accelerate progress in theoretical and experimental efforts to understand the correlations that produce
nuclear clustering and collective behavior.
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Supplemental Materials

Lattice interactions

In our lattice simulations the spatial lattice spacing is taken to be a = 1.97 fm, and the time lattice spacing is at = 1.97 fm/c.
The axial-vector coupling constant is gA = 1.29, pion decay constant is fπ = 92.2 MeV, pion mass is mπ = mπ0 =
134.98 MeV, and nucleon mass is m = 938.92 MeV. We write σS with S = 1, 2, 3 for the spin Pauli matrices, and τI with
I = 1, 2, 3 for the isospin Pauli matrices. We use dimensionless lattice units, where the physical quantities are multiplied by
powers of the spatial lattice spacing a to make dimensionless combinations. We write αt for the ratio at/a.

The notation
∑
〈n′ n〉 represents the summation over nearest-neighbor lattice sites of n. We use

∑
〈n′ n〉i to indicate the sum

over nearest-neighbor lattice sites of n along the ith spatial axis. Similarly,
∑
〈〈n′ n〉〉i is the sum over next-to-nearest-neighbor

lattice sites of n along the ith axis, and
∑
〈〈〈n′ n〉〉〉i is the sum over next-to-next-to-nearest-neighbor lattice sites of n along the

ith axis. Our lattice system is defined on an L× L× L periodic cube, and so the summations over n′ are defined with periodic
boundary conditions.

In our notation aNL is a four-component spin-isospin column vector while a†NL is a four-component spin-isospin row vector.
For real parameter sNL, we define the nonlocal annihilation and creation operators for each spin and isospin component of the
nucleon,

aNL(n) = a(n) + sNL

∑
〈n′ n〉

a(n′), (1)

a†NL(n) = a†(n) + sNL

∑
〈n′ n〉

a†(n′). (2)

For spin indices S = 1, 2, 3, and isospin indices I = 1, 2, 3, we define point-like densities,

ρ(n) = a†(n)a(n), (3)

ρS(n) = a†(n)[σS ]a(n), (4)

ρI(n) = a†(n)[τI ]a(n), (5)

ρS,I(n) = a†(n)[σS ⊗ τI ]a(n). (6)

and also the smeared nonlocal densities,

ρNL(n) = a†NL(n)aNL(n), (7)

ρS,NL(n) = a†NL(n)[σS ]aNL(n), (8)

ρI,NL(n) = a†NL(n)[τI ]aNL(n), (9)

ρS,I,NL(n) = a†NL(n)[σS ⊗ τI ]aNL(n). (10)

For the leading-order short-range interactions we use

V0 =
c0
2

∑
n′,n,n′′

: ρNL(n′)fsL(n′ − n)fsL(n− n′′)ρNL(n′′) : (11)

where fsL is defined for real parameter sL as

fsL(n) = 1 for |n| = 0,

= sL for |n| = 1,

= 0 otherwise. (12)

The :: symbol indicates normal ordering, where the annihilation operators are on the right-hand side and the creation operators
are on the left-hand side.

The one-pion exchange interaction is given by

VOPE = − g2A
8f2π

∑
n′,n,S′,S,I

: ρS′,I(n
′)fS′S(n′ − n)ρS,I(n) :, (13)
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where fS′S is defined as

fS′S(n′−n) =
1

L3

∑
q

exp[−iq · (n′ − n)− bπq2]qS′qS
q2 +m2

π

, (14)

and each qS is an integer multiplied by 2π/L. The parameter bπ removes short-distance lattice artifacts in the one-pion exchange
interaction, and in this work we use the value bπ = 0.700. We take the free lattice Hamiltonian to have the form [30]

Hfree =
49

12m

∑
n

a†(n)a(n)− 3

4m

∑
n,i

∑
〈n′ n〉i

a†(n′)a(n)

+
3

40m

∑
n,i

∑
〈〈n′ n〉〉i

a†(n′)a(n)− 1

180m

∑
n,i

∑
〈〈〈n′ n〉〉〉i

a†(n′)a(n). (15)

The full leading-order (LO) lattice Hamiltonian can be written as

HB = Hfree + V0 + VOPE, (16)

with sNL = 0.0800, sL = 0.0800, and c0 = −0.1850. In tuning our interactions here, we fit the parameters sNL, sL, and c0
to the average inverse scattering length and effective range of the two s-wave channels, as well as the finite-volume energies of
8Be. The finite-volume energies for 8Be give a measure of the alpha-alpha scattering length, which was emphasized in Ref. [10]
as a sensitive indicator correlated with the binding energies of medium-mass nuclei.

Nucleon-nucleon scattering

The details of the nucleon-nucleon scattering calculations are given in Ref. [10]. In Fig. S1 we show the LO lattice phase
shifts for proton-neutron scattering versus the center-of-mass relative momentum. For comparison we also present phase shifts
from the Nijmegen partial wave analysis [31]. In the first row, the data in panels a, b, c, d correspond to 1s0,

3s1,
1p1,

3p0
respectively. In the second row, panels e, f, g, h correspond to 3p1,

3p2,
1d2,

3d1 respectively. In the third row, panels i, j, k, l
correspond to 3d2,

3d3, ε1, ε2 respectively. These leading-order results are just the first step in the chiral effective field theory
expansion, and the phase shifts would be systematically improved at each higher order, NLO, NNLO, etc.

Euclidean time projection and auxiliary-field Monte Carlo

The Euclidean time transfer matrix M is defined as the normal-ordered exponential of the lattice Hamiltonian H over one
time lattice step,

M =: exp[−Hαt] : . (17)

We use an initial state |Ψi〉 and final state |Ψf 〉 that have nonzero overlap with the ground state nucleus of interest. By multiplying
by powers of M upon |Ψi〉, we can project out the ground state. We compute projection amplitudes of the form

Afi(Lt) = 〈Ψf |MLt |Ψi〉. (18)

By calculating the ratio Afi(Lt)/Afi(Lt − 1) for large Lt we can determine the ground state energy.
It is useful to first prepare the initial state using a simpler transfer matrix M∗ that is good approximation to M . We choose

M∗ to be invariant under Wigner’s SU(4) symmetry [21]. The SU(4) symmetry eliminates sign oscillations from auxiliary-field
Monte Carlo simulations of M∗ [32, 33]. M∗ has the same form as M, but the operator coefficients that violate SU(4) symmetry
are turned off. We use M∗ as an approximate low-energy filter by multiplying the initial and final states by M∗ some fixed
number of times, L′t,

Afi(Lt) = 〈Ψf |M
L′

t
∗ MLtM

L′
t
∗ |Ψi〉. (19)

We use auxiliary fields to generate the lattice interactions. The auxiliary field method can be viewed as a Gaussian integral
formula which relates the exponential of the two-particle density, ρ2, to the integral of the exponential of the one-particle density,
ρ,

: exp
(
−cαt

2
ρ2
)

: =

√
1

2π

∫ ∞
−∞

ds : exp

(
−1

2
s2 +

√
−cαtsρ

)
: . (20)
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FIG. S1: We plot LO lattice phase shifts for proton-neutron scattering versus the center-of-mass relative momentum. For comparison we
also plot the phase shifts extracted from the Nijmegen partial wave analysis [31]. In the first row, the data in panels a, b, c, d correspond to
1s0,

3s1,
1p1,

3p0 respectively. In the second row, panels e, f, g, h correspond to 3p1,
3p2,

1d2,
3d1 respectively. In the third row, panels i, j, k,

l correspond to 3d2,
3d3, ε1, ε2 respectively.
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The normal ordering symbol :: ensures that the operator products of the creation and annihilation operators behave as classical
anticommuting Grassmann variables [34]. We use this integral identity to introduce auxiliary fields at every lattice site [35–37].
The pion fields are treated in a manner similar to the auxiliary fields.

We couple the auxiliary field s to ρNL through a convolution with the smearing function fsL . The linear term in the auxiliary
field is

V s0 =
√
−c0

∑
n,n′

ρNL(n)fsL(n− n′)s(n′), (21)

and the quadratic term in the auxiliary field is

V ss0 =
1

2

∑
n

s2(n). (22)

For the one-pion exchange interaction, the gradient of the pion field πI is coupled to the point-like density ρS,I ,

V π =
gA
2fπ

∑
n,n′,S,I

ρS,I(n
′)fπS (n′ − n)πI(n), (23)

V ππ =
1

2

∑
n,n′,I

πI(n
′)fππ(n′ − n)πI(n) :, (24)

where fπS and fππ are defined as

fπS (n′−n) =
1

L3

∑
q

exp[−iq · (n′ − n)]qS , (25)

fππ(n′−n) =
1

L3

∑
q

exp[−iq · (n′ − n) + bπq
2](q2 +m2

π). (26)
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Then the transfer matrix at leading order can be written as

: exp (−Hαt) :=

∫
DsDπ : exp (−Hfreeαt − V s0

√
αt − V ss0 − V παt − V ππαt) :, (27)

where Ds is the path integral measure for s, and Dπ is the path integral measure for πI .
We use the same procedure for the initial states as discussed in Ref. [10], where four nucleons are inserted at each time step.

For neutron-rich nuclei we also insert pairs of spin-up and spin-down neutrons, and for proton-rich nuclei we insert pairs of
spin-up and spin-down protons. For the calculations of 3H and 3He we use an L = 16 fm periodic box, and for the rest of the
nuclei we use an L = 12 fm periodic box.

Results for the ground state energies

In Fig. S2 we show the energy versus projection time for 3H and 3He. The error bars indicate one standard deviation errors
due to the stochastic noise of the Monte Carlo simulations. The lines are extrapolations to infinite projection time using the
functional form

E(t) = E0 + c exp[−∆E t], (28)

where E0 is the ground state energy that we wish to determine. The results for the helium isotopes are shown in Fig. S3, the
beryllium isotopes in Fig. S4, the carbon isotopes in Fig. S5, and the oxygen isotopes in Fig. S6.

FIG. S2: We show the energy versus projection time for 3H and 3He. Since the leading-order action is isospin invariant, the results are the
same for the two nuclei. The error bars indicate one standard deviation errors from the stochastic noise of the Monte Carlo simulations, and
the line shows the extrapolation to infinite projection time.
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Results for ρ3 and ρ4

We compute ρ3 by inserting the operator

: exp

[∑
n

ε(n)ρ(n)

]
: (29)

at the middle time step and taking three numerical derivatives with respect to ε(n) for infinitesmally small ε(n). We then divide
by 3! and sum over n. For ρ4 we compute four numerical derivatives with respect to ε(n), divide by 4!, and sum over n.

In Fig. S7 we show ρ3 versus projection time for the neutron-rich helium, beryllium, and carbon isotopes. The error bars
indicate one standard deviation errors due to the stochastic noise of the Monte Carlo simulations. The lines are extrapolations to
infinite projection time using the functional forms

ρ3(t) = ρ3 + c3 exp[−∆E t/2], (30)
ρ4(t) = ρ4 + c4 exp[−∆E t/2], (31)
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FIG. S3: We show the energy versus projection time for the helium isotopes. The error bars indicate one standard deviation errors from the
stochastic noise of the Monte Carlo simulations, and the lines show extrapolations to infinite projection time.
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FIG. S4: We show the energy versus projection time for the beryllium isotopes. The error bars indicate one standard deviation errors from the
stochastic noise of the Monte Carlo simulations, and the lines show extrapolations to infinite projection time.
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FIG. S5: We show the energy versus projection time for the carbon isotopes. The error bars indicate one standard deviation errors from the
stochastic noise of the Monte Carlo simulations, and the lines show extrapolations to infinite projection time.
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where ∆E is determined from the ground state energy fit in Eq. (28). The factor of t/2 rather than t reflects the fact that there
are exponential corrections from matrix elements connecting the ground state to the first excited state. In Fig. S8 we show ρ4
versus projection time for the neutron-rich helium, beryllium, and carbon isotopes.
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FIG. S6: We show the energy versus projection time for the oxygen isotopes. The error bars indicate one standard deviation errors from the
stochastic noise of the Monte Carlo simulations, and the lines show extrapolations to infinite projection time.
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FIG. S7: We show ρ3 versus projection time for the neutron-rich helium, beryllium, and carbon isotopes. The error bars indicate one standard
deviation errors from the stochastic noise of the Monte Carlo simulations, and the lines show extrapolations to infinite projection time.

 0

 1

 2

 3

 4

 5

 0  0.05  0.1  0.15  0.2  0.25  0.3

ρ 3
 (l

at
tic

e 
un

its
)

projection time (MeV-1)

4He 6He8He8Be10Be12Be14Be12C14C16C18C20C22C

FIG. S8: We show ρ4 versus projection time for the neutron-rich helium, beryllium, and carbon isotopes. The error bars indicate one standard
deviation errors from the stochastic noise of the Monte Carlo simulations, and the lines show extrapolations to infinite projection time.
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Pinhole algorithm and density correlations

Auxiliary-field Monte Carlo simulations are efficient for computing the quantum properties of systems with attractive pairing
interactions. By the calculating the exact quantum amplitude for each configuration of auxiliary fields, we obtain the full set
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of correlations induced by the interactions. However, the exact quantum amplitude for each auxiliary field configuration in-
volves quantum states which are superpositions of many different center-of-mass positions. Therefore information about density
correlations relative to the center of mass is lost. The pinhole algorithm is a new computational approach that allows for the cal-
culation of arbitrary density correlations with respect to the center of mass. As this was not possible in all previous auxiliary-field
Monte Carlo simulations, adaptations of this technique should have wide applications to hadronic, nuclear, condensed matter,
and ultracold atomic simulations.

We let ρi,j(n) be the density operator for nucleons with spin i and isospin j at lattice site n,

ρi,j(n) = a†i,j(n)ai,j(n). (32)

We construct the normal-ordered A-body density operator

ρi1,j1,···iA,jA(n1, · · ·nA) = : ρi1,j1(n1) · · · ρiA,jA(nA) : . (33)

In the A-nucleon subspace, we note the completeness identity∑
i1,j1,···iA,jA

∑
n1,···nA

ρi1,j1,···iA,jA(n1, · · ·nA) = A!. (34)

The new feature of the pinhole algorithm is that Monte Carlo importance sampling is performed according to the absolute value
of the expectation value

〈Ψf |M
L′

t
∗ MLt/2ρi1,j1,···iA,jA(n1, · · ·nA)MLt/2M

L′
t
∗ |Ψi〉. (35)

Due to the completeness identity Eq. (34), the sum of the amplitude in Eq. (35) over n1, · · ·nA and i1, j1, · · · iA, jA gives A!
times the amplitude without any insertion of the A-body density,

〈Ψf |M
L′

t
∗ MLtM

L′
t
∗ |Ψi〉. (36)

The pinhole locations n1, · · ·nA and spin-isospin indices i1, j1, · · · iA, jA are sampled by Metropolis updates [38], while the
auxiliary fields are sampled by the hybrid Monte Carlo algorithm [39, 40]. In Fig. S9 we show a sketch of the pinhole locations
and spin-isospin indices for the operator ρi1,j1,···iA,jA(n1, · · ·nA) inserted at time t = Ltat/2. We obtain the ground state
expectation value by extrapolating to the limit of infinite projection time.

FIG. S9: A sketch of the pinhole locations and spin-isospin indices at time t = Ltat/2.
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For spatial lattice spacing a, the coordinates ri of each nucleon on the lattice is an integer vector ni times a. We do not
consider mass differences between protons and neutrons in these calculations. Since the center of mass is a mass-weighted
average of A nucleons with the same mass, the center-of-mass position rCM is an integer vector nCM times a/A. Therefore the
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density distribution has a resolution scale that isA times smaller than the lattice spacing. In order to determine the center-of-mass
position rCM, we minimize the squared radius ∑

i

|rCM − ri|2 , (37)

where each term |rCM − ri| is minimized with respect to all periodic copies of the separation distance on the lattice. We
comment that the tails of the proton and neutron density distributions are determined from the asymptotic properties of the
A-body wave function, which have been derived in a recent paper [41] for interactions with finite range.

As discussed in the main text, from the A-body density information we can view the triangular shapes formed by the three
spin-up protons in the carbon isotopes. The positions of the three spin-up protons serve as a measure of the alpha cluster
geometry. In Fig. S10 we sketch a typical configuration of the protons (red) and neutrons (blue) with the arrows indicating up
and down spins in 12C. The three spin-up protons form the vertices of a triangle, and this is indicated by the orange triangle in
Fig. S10. When collecting the lattice simulation data, we rotate the triangle so that the longest side lies on the x-axis. We also
rescale the triangle so the longest side has length one, and flip the triangle, if needed, so that the third spin-up proton is in the
upper half of the xy-plane.

FIG. S10: We sketch a typical configuration of the protons (red) and neutrons (blue) in 12C, with the arrows indicating up and down spins.
The triangle of spin-up protons is indicated by the orange triangle.



14

[1] F. Hoyle, Astrophys. J. Suppl. 1, 121 (1954).
[2] C. Cook, W. A. Fowler, C. C. Lauritsen, and T. Lauritsen, Phys. Rev. 107, 508 (1957).
[3] C. Romero-Redondo, S. Quaglioni, P. Navratil, and G. Hupin, Phys. Rev. Lett. 113, 032503 (2014), 1404.1960.
[4] P. Maris, J. P. Vary, A. Calci, J. Langhammer, S. Binder, and R. Roth, Phys. Rev. C90, 014314 (2014), 1405.1331.
[5] T. Dytrych, P. Maris, K. D. Launey, J. P. Draayer, J. P. Vary, D. Langr, E. Saule, M. A. Caprio, U. Catalyurek, and M. Sosonkina, Comput.

Phys. Commun. 207, 202 (2016), 1602.02965.
[6] T. Duguet, V. Soma, S. Lecluse, C. Barbieri, and P. Navratil (2016), 1611.08570.
[7] S. R. Stroberg, A. Calci, H. Hergert, J. D. Holt, S. K. Bogner, R. Roth, and A. Schwenk, Phys. Rev. Lett. 118, 032502 (2017), 1607.03229.
[8] R. F. Garcia Ruiz et al., Nature Phys. 12, 594 (2016), 1602.07906.
[9] G. Hagen, G. R. Jansen, and T. Papenbrock, Phys. Rev. Lett. 117, 172501 (2016), 1605.01477.

[10] S. Elhatisari et al., Phys. Rev. Lett. 117, 132501 (2016), 1602.04539.
[11] K. D. Launey, T. Dytrych, and J. P. Draayer, Prog. Part. Nucl. Phys. 89, 101 (2016), 1612.04298.
[12] Y. Yoshida and Y. Kanada-En’yo (2016), 1609.01407.
[13] H. Feldmeier and T. Neff (2016), 1612.02602.
[14] P. Schuck, Y. Funaki, H. Horiuchi, G. Roepke, A. Tohsaki, and T. Yamada, Phys. Scripta 91, 123001 (2016), 1702.02191.
[15] T. Yoshida, N. Shimizu, T. Abe, and T. Otsuka, J. Phys. Conf. Ser. 569, 012063 (2014).
[16] A. Lovato, S. Gandolfi, J. Carlson, S. C. Pieper, and R. Schiavilla, Phys. Rev. Lett. 117, 082501 (2016), 1605.00248.
[17] E. Epelbaum, H. Krebs, D. Lee, and U.-G. Meißner, Phys. Rev. Lett. 106, 192501 (2011), 1101.2547.
[18] E. Epelbaum, H. Krebs, T. Lähde, D. Lee, and U.-G. Meißner, Phys. Rev. Lett. 109, 252501 (2012), 1208.1328.
[19] E. Epelbaum, H. Krebs, T. A. Lähde, D. Lee, and U.-G. Meißner, Phys. Rev. Lett. 110, 112502 (2013), 1212.4181.
[20] E. Epelbaum, H. Krebs, T. A. Lähde, D. Lee, U.-G. Meißner, and G. Rupak, Phys. Rev. Lett. 112, 102501 (2014), 1312.7703.
[21] E. Wigner, Phys. Rev. 51, 106 (1937).
[22] S. Elhatisari, D. Lee, G. Rupak, E. Epelbaum, H. Krebs, T. A. Lähde, T. Luu, and U.-G. Meißner, Nature 528, 111 (2015), 1506.03513.
[23] A. Rokash, E. Epelbaum, H. Krebs, and D. Lee (2016), 1612.08004.
[24] H. G. Bohlen, T. Dorsch, T. Kokalova, W. von Oertzen, C. Schulz, and C. Wheldon, Nucl. Phys. A787, 451 (2007).
[25] H. G. Bohlen et al., Nucl. Phys. A722, C3 (2003).
[26] M. Freer, AIP Conf. Proc. 1072, 58 (2008).
[27] D. J. Marin-Lambarri, R. Bijker, M. Freer, M. Gai, T. Kokalova, D. J. Parker, and C. Wheldon, Phys. Rev. Lett. 113, 012502 (2014),

1405.7445.
[28] R. Pohl et al., Nature 466, 213 (2010).
[29] F. J. Kline, H. Crannell, J. T. O’ Brien, J. Mccarthy, and R. R. Whitney, Nucl. Phys. A209, 381 (1973).
[30] E. Epelbaum, H. Krebs, D. Lee, and U.-G. Meißner, Eur. Phys. J. A45, 335 (2010), 1003.5697.
[31] V. G. J. Stoks, R. A. M. Kompl, M. C. M. Rentmeester, and J. J. de Swart, Phys. Rev. C48, 792 (1993).
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