001     828346
005     20220930130118.0
024 7 _ |a 10.1088/1367-2630/aa64a1
|2 doi
024 7 _ |a 2128/14316
|2 Handle
024 7 _ |a WOS:000405655000001
|2 WOS
024 7 _ |a altmetric:18723504
|2 altmetric
037 _ _ |a FZJ-2017-02310
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Friedrich, Rico
|0 P:(DE-Juel1)157874
|b 0
|e Corresponding author
245 _ _ |a Designing the Rashba spin texture by adsorption of inorganic molecules
260 _ _ |a [Bad Honnef]
|c 2017
|b Dt. Physikalische Ges.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1552576079_31636
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Using the physisorption and chemisorption of inorganic molecules on BiAg$_2$/Ag(111) we demonstrate from first principles that the spin-orbit splitting and the spin direction of surface Rashba-split states can be manipulated selectively. Although NH$_3$ is physisorbed, it nevertheless leads to a slight enhancement of the outward buckling of the surface Bi that increases the magnitude of the Rashba splitting. On the other hand, the weakly chemisorbed BH$_3$ determines a strong inward relaxation of the surface Bi such that the occupied Rashba state shifts into Ag bulk states while a new unoccupied one is induced. Importantly, for the BH$_3$--BiAg$_2$/Ag(111) system the size of the out-of-plane spin polarization is significantly larger than the in-plane one at variance with the clean surface case.
536 _ _ |a 142 - Controlling Spin-Based Phenomena (POF3-142)
|0 G:(DE-HGF)POF3-142
|c POF3-142
|f POF III
|x 0
536 _ _ |a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|0 G:(DE-HGF)POF3-143
|c POF3-143
|f POF III
|x 1
536 _ _ |a Magnetic Anisotropy of Metallic Layered Systems and Nanostructures (jiff13_20131101)
|0 G:(DE-Juel1)jiff13_20131101
|c jiff13_20131101
|f Magnetic Anisotropy of Metallic Layered Systems and Nanostructures
|x 2
536 _ _ |a Structural, electronic and magnetic properties of hybrid interfaces (jias10_20161101)
|0 G:(DE-Juel1)jias10_20161101
|c jias10_20161101
|f Structural, electronic and magnetic properties of hybrid interfaces
|x 3
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Caciuc, Vasile
|0 P:(DE-Juel1)130583
|b 1
700 1 _ |a Bihlmayer, Gustav
|0 P:(DE-Juel1)130545
|b 2
700 1 _ |a Atodiresei, Nicolae
|0 P:(DE-Juel1)130513
|b 3
700 1 _ |a Blügel, Stefan
|0 P:(DE-Juel1)130548
|b 4
773 _ _ |a 10.1088/1367-2630/aa64a1
|0 PERI:(DE-600)1464444-7
|p 043017
|t New journal of physics
|v 19
|y 2017
|x 1367-2630
856 4 _ |u https://juser.fz-juelich.de/record/828346/files/Friedrich_2017_New_J._Phys._19_043017.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/828346/files/Friedrich_2017_New_J._Phys._19_043017.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:828346
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)157874
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)130583
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130545
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130513
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130548
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-142
|2 G:(DE-HGF)POF3-100
|v Controlling Spin-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|2 G:(DE-HGF)POF3-100
|v Controlling Configuration-Based Phenomena
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a Creative Commons Attribution CC BY 3.0
|0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEW J PHYS : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|k IAS-1
|l Quanten-Theorie der Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21