000828363 001__ 828363
000828363 005__ 20240313094847.0
000828363 037__ $$aFZJ-2017-02327
000828363 1001_ $$0P:(DE-Juel1)159172$$aCanova, Carlos$$b0$$eCorresponding author$$ufzj
000828363 1112_ $$a1st HBP Student Conference$$cVienna$$d2017-02-08 - 2017-02-10$$wAustria
000828363 245__ $$aASSET for JULIA: executing massively parallel spike correlation analysis on a KNL cluster
000828363 260__ $$c2017
000828363 3367_ $$033$$2EndNote$$aConference Paper
000828363 3367_ $$2BibTeX$$aINPROCEEDINGS
000828363 3367_ $$2DRIVER$$aconferenceObject
000828363 3367_ $$2ORCID$$aCONFERENCE_POSTER
000828363 3367_ $$2DataCite$$aOutput Types/Conference Poster
000828363 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1490337802_17089$$xAfter Call
000828363 520__ $$aIntroduction: We developed a statistical analysis method, ASSET, capable of detecting repeated sequences of synchronous events (SSE) in massively parallel spike trains [1]. Yet we have not been able to apply ASSET in its full extent, given the high computational demand when assessing significance of the SSEs. This challenge, however, can now be overcome with the support from the High Performance Analytics and Computing Platform (HPAC), and their readily available modern infrastructure. Here we present the first steps towards analyzing electrophysiological recordings with ASSET on one of the new pre-commercial procurement machines, JULIA, which is based on Intel's new Knights Landing (KNL) processor.Motivation: ASSET is an analysis designed to detect and quantify activity in a synfire chain [2], a feedforward neuronal network with high convergence and divergence of connectivity between the layers (groups). Particular to such a network is that it favors the propagation of synchronous spiking activities, which appear in measurements as SSEs. In ASSET, the repetitive occurrence of an identical SSE becomes visible in an intersection matrix as a diagonal structure (DS) [3,4], which is evaluated automatically for significance. Currently, the ASSET method can only be applied to time segments that are considerably shorter than the full duration of a typical session of massively parallel electrophysiological recordings due to costly numerical steps in the analysis. However, these numerical computations are composed of independent steps and thus ASSET would profit from parallelization. A second challenge is the core of the algorithm, which makes extensive use of exponential and logarithmic operations. These operations are computational expensive and do not lend themselves to easy array vectorization on modern HPC hardware.Method: After analysis and instrumentation of ASSET, an MPI version of the software was implemented, distributing the workload across multiple compute instances in a round-robin manner. After the work on the nodes, the partial results are collected on the master node and summed for the final results. In a parallel effort we optimized the core of the ASSET algorithm: the exponential and logarithmic operations are typically calculated using Taylor expansions. Approximate methods perform the same mathematical operations faster at the expense of an error smaller than 1E-6. This speedup can be further improved on by (automatic) array vectorization of the code implementing these methods. These techniques were combined with C implementations using the Cython programming interface.Results: The MPI implementation allowed us to leverage the large number of cores available in current hardware and showed an order of magnitude shorter time to solution. We will further report on the preliminary qualitative and quantitative analysis of the approximate methods and its effects on the runtime of the algorithm, including the results of running the algorithm on the KNL processors of JULIA. ASSET is currently available to the scientific community via the Electrophysiological Analysis Toolkit (Elephant) [5], and as such is also available to all members of the Human Brain Project Consortium via the Collab.AcknowledgementsSupported by Helmholtz Portfolio Theme Supercomputing and Modeling for the Human Brain (SMHB), EU grant 604102 (Human Brain Project, HBP), EU Grant 269912 (BrainScaleS), DFG Priority Program SPP 1665 (GR 1753/4-1 and 2175/1-1).References1. Torre E. et al (2016) PloS CB 12(7):e1004939. 10.1371/journal.pcbi.10049392. Abeles M. (1991) Corticonics, Cambridge University Press, Cambridge3. Schrader S. et al (2008) J Neurophysiol 100: 2165-2176, 10.1152/jn.01245.2004. Gerstein GL. et al (2012) J Neurosci Methods 206: 54-64, 10.1016/j.jneumeth.2012.02.0035. neuralensemble.org/elephant/
000828363 536__ $$0G:(DE-HGF)POF3-571$$a571 - Connectivity and Activity (POF3-571)$$cPOF3-571$$fPOF III$$x0
000828363 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x1
000828363 536__ $$0G:(DE-HGF)POF3-513$$a513 - Supercomputer Facility (POF3-513)$$cPOF3-513$$fPOF III$$x2
000828363 536__ $$0G:(DE-Juel1)HGF-SMHB-2013-2017$$aSMHB - Supercomputing and Modelling for the Human Brain (HGF-SMHB-2013-2017)$$cHGF-SMHB-2013-2017$$fSMHB$$x3
000828363 536__ $$0G:(EU-Grant)720270$$aHBP SGA1 - Human Brain Project Specific Grant Agreement 1 (720270)$$c720270$$fH2020-Adhoc-2014-20$$x4
000828363 536__ $$0G:(EU-Grant)269921$$aBRAINSCALES - Brain-inspired multiscale computation in neuromorphic hybrid systems (269921)$$c269921$$fFP7-ICT-2009-6$$x5
000828363 536__ $$0G:(GEPRIS)238707842$$aDFG project 238707842 - Kausative Mechanismen mesoskopischer Aktivitätsmuster in der auditorischen Kategorien-Diskrimination (238707842)$$c238707842$$x6
000828363 7001_ $$0P:(DE-Juel1)168169$$aKlijn, Wouter$$b1$$eCorresponding author$$ufzj
000828363 7001_ $$0P:(DE-Juel1)156619$$aBaumeister, Paul F.$$b2$$ufzj
000828363 7001_ $$0P:(DE-Juel1)161462$$aYegenoglu, Alper$$b3$$ufzj
000828363 7001_ $$0P:(DE-Juel1)144807$$aDenker, Michael$$b4$$ufzj
000828363 7001_ $$0P:(DE-Juel1)144441$$aPleiter, Dirk$$b5$$ufzj
000828363 909CO $$ooai:juser.fz-juelich.de:828363$$pec_fundedresources$$pVDB$$popenaire
000828363 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159172$$aForschungszentrum Jülich$$b0$$kFZJ
000828363 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168169$$aForschungszentrum Jülich$$b1$$kFZJ
000828363 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156619$$aForschungszentrum Jülich$$b2$$kFZJ
000828363 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161462$$aForschungszentrum Jülich$$b3$$kFZJ
000828363 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144807$$aForschungszentrum Jülich$$b4$$kFZJ
000828363 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144441$$aForschungszentrum Jülich$$b5$$kFZJ
000828363 9131_ $$0G:(DE-HGF)POF3-571$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vConnectivity and Activity$$x0
000828363 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x1
000828363 9131_ $$0G:(DE-HGF)POF3-513$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vSupercomputer Facility$$x2
000828363 9141_ $$y2017
000828363 920__ $$lyes
000828363 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
000828363 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x1
000828363 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x2
000828363 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x3
000828363 980__ $$aposter
000828363 980__ $$aVDB
000828363 980__ $$aI:(DE-Juel1)INM-6-20090406
000828363 980__ $$aI:(DE-Juel1)IAS-6-20130828
000828363 980__ $$aI:(DE-Juel1)INM-10-20170113
000828363 980__ $$aI:(DE-Juel1)JSC-20090406
000828363 980__ $$aUNRESTRICTED
000828363 981__ $$aI:(DE-Juel1)IAS-6-20130828