000828385 001__ 828385
000828385 005__ 20210129230100.0
000828385 0247_ $$2Handle$$a2128/14295
000828385 037__ $$aFZJ-2017-02346
000828385 041__ $$aEnglish
000828385 1001_ $$0P:(DE-Juel1)159104$$aSchreiber, Christina$$b0$$eCorresponding author
000828385 1112_ $$aIWA Conference on Algal Technologies for Wastewater Treatment and Resource Recovery$$cDelft$$d2017-03-16 - 2017-03-17$$wThe Netherlands
000828385 245__ $$aAlgalFertilizer project:Algae deliering nutrients from phosphorous-rich media to soil and wheat
000828385 260__ $$c2017
000828385 3367_ $$033$$2EndNote$$aConference Paper
000828385 3367_ $$2BibTeX$$aINPROCEEDINGS
000828385 3367_ $$2DRIVER$$aconferenceObject
000828385 3367_ $$2ORCID$$aCONFERENCE_POSTER
000828385 3367_ $$2DataCite$$aOutput Types/Conference Poster
000828385 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1493363262_21053$$xOther
000828385 520__ $$aAs an application-oriented part of the AlgalFertilizer Project, we cultivated Chlorella vulgaris, IPPAS C1 in 3.6 m3 suspension in V-shaped plastic bag photobioreactors (NovaGreen GmbH) in Jülich, Germany. The culture was grown in batch regime in a P-rich medium. The thus produced algal biomass was analyzed for nutrient content with special regard to phosphorus and used as fertilizer to grow wheat in a pot experiment under controlled phosphorus levels on different substrates: sand and nutrient-poor ‘Null-Erde’ for controlled nutrient levels as well as a nutrient-rich substrate (Dachstaudensubstrat, SoMi 513). The algal biomass was mixed into the soil substrates either in form of spray-dried powder or as a suspension of fresh cells obtained by centrifugation to estimate P-exchange properties of pre-treated and fresh biomass. Aiming at comparison to standard Hoagland mineral fertilizer, we applied algae at two different P-levels: high, corresponding to 45 kg(P)/ha and low, corresponding to 4.5 kg(P)/ha. 150 pots were prepared for the experiment. Each experimental variant was represented by 10 pots of identical substrate and fertilization treatment.  One pre-germinated seed of wheat (Triticum aestivum, var. Scirocco) was placed in each pot. The plants were placed in a greenhouse on a robotic platform that randomized position of individual pots and also ensured uniform watering. Individual plants were moved regularly with their pots into an imaging system that served to quantify the plant growth. We also analyzed the dynamics of nutrients in the soil. The results of the AlgalFertilizer experiment lead us to conclude that microalgae are not only very potent in sequestering phosphorus from nutrient rich streams (Part 1 of this presentation) but that algal biomass can be used as a very effective fertilizer and ameliorant of nutrient-poor soils (Part 2 of this presentation).
000828385 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0
000828385 536__ $$0G:(BioSC)20172303$$aAF AlgalFertilizer - AlgalFertilizer (20172303)$$c20172303$$x1
000828385 536__ $$0G:(DE-Juel1)BioSC$$aBioSC - Bioeconomy Science Center (BioSC)$$cBioSC$$x2
000828385 7001_ $$0P:(DE-Juel1)164596$$aHarrison, Lucy$$b1
000828385 7001_ $$0P:(DE-Juel1)166424$$aSchrey, Silvia$$b2
000828385 7001_ $$0P:(DE-Juel1)168528$$aAckermann, Bärbel$$b3
000828385 7001_ $$0P:(DE-Juel1)159592$$aNedbal, Ladislav$$b4
000828385 7001_ $$0P:(DE-Juel1)129471$$aHofmann, Diana$$b5
000828385 7001_ $$0P:(DE-Juel1)165137$$aSchiedung, Henning$$b6
000828385 7001_ $$0P:(DE-Juel1)129427$$aAmelung, Wulf$$b7
000828385 7001_ $$0P:(DE-HGF)0$$aMettler-Altmann, Tabea$$b8
000828385 7001_ $$0P:(DE-HGF)0$$aSadowsky, Andres$$b9
000828385 7001_ $$0P:(DE-HGF)0$$aHotopp, Ines$$b10
000828385 7001_ $$0P:(DE-HGF)0$$aEbenhöh, Oliver$$b11
000828385 8564_ $$uhttps://juser.fz-juelich.de/record/828385/files/Poster%20IWA%20Delft%2016_17.03.2017%20B.Ackermann-1.pdf$$yOpenAccess
000828385 8564_ $$uhttps://juser.fz-juelich.de/record/828385/files/Poster%20IWA%20Delft%2016_17.03.2017%20B.Ackermann-1.gif?subformat=icon$$xicon$$yOpenAccess
000828385 8564_ $$uhttps://juser.fz-juelich.de/record/828385/files/Poster%20IWA%20Delft%2016_17.03.2017%20B.Ackermann-1.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000828385 8564_ $$uhttps://juser.fz-juelich.de/record/828385/files/Poster%20IWA%20Delft%2016_17.03.2017%20B.Ackermann-1.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000828385 8564_ $$uhttps://juser.fz-juelich.de/record/828385/files/Poster%20IWA%20Delft%2016_17.03.2017%20B.Ackermann-1.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000828385 8564_ $$uhttps://juser.fz-juelich.de/record/828385/files/Poster%20IWA%20Delft%2016_17.03.2017%20B.Ackermann-1.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000828385 909CO $$ooai:juser.fz-juelich.de:828385$$pdriver$$pVDB$$popen_access$$popenaire
000828385 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000828385 9141_ $$y2017
000828385 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159104$$aForschungszentrum Jülich$$b0$$kFZJ
000828385 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164596$$aForschungszentrum Jülich$$b1$$kFZJ
000828385 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166424$$aForschungszentrum Jülich$$b2$$kFZJ
000828385 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168528$$aForschungszentrum Jülich$$b3$$kFZJ
000828385 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159592$$aForschungszentrum Jülich$$b4$$kFZJ
000828385 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129471$$aForschungszentrum Jülich$$b5$$kFZJ
000828385 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165137$$aForschungszentrum Jülich$$b6$$kFZJ
000828385 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129427$$aForschungszentrum Jülich$$b7$$kFZJ
000828385 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000828385 920__ $$lyes
000828385 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000828385 980__ $$aposter
000828385 980__ $$aVDB
000828385 980__ $$aUNRESTRICTED
000828385 980__ $$aI:(DE-Juel1)IBG-2-20101118
000828385 9801_ $$aFullTexts