000828398 001__ 828398
000828398 005__ 20240712084514.0
000828398 0247_ $$2Handle$$a2128/14008
000828398 0247_ $$2ISSN$$a1866-1793
000828398 020__ $$a978-3-95806-208-5
000828398 037__ $$aFZJ-2017-02359
000828398 041__ $$aEnglish
000828398 1001_ $$0P:(DE-Juel1)145848$$aDyck, Tobias$$b0$$eCorresponding author$$gmale$$ufzj
000828398 245__ $$aLight Trapping by Light Treatment - Direct Laser Interference Patterning for theTexturing of Front Contacts in Thin-Film Silicon Solar Cells$$f- 2016-11-22
000828398 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2017
000828398 300__ $$avi, 172, XI S.
000828398 3367_ $$2DataCite$$aOutput Types/Dissertation
000828398 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$mbook
000828398 3367_ $$2ORCID$$aDISSERTATION
000828398 3367_ $$2BibTeX$$aPHDTHESIS
000828398 3367_ $$02$$2EndNote$$aThesis
000828398 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s1490337857_17089
000828398 3367_ $$2DRIVER$$adoctoralThesis
000828398 4900_ $$aSchriften des Forschungszentrums Jülich Reihe Energie & Umwelt / Energy & Environment$$v359
000828398 502__ $$aRWTH Aachen, Diss., 2017$$bDr.$$cRWTH Aachen$$d2017
000828398 520__ $$aTo further increase the energy conversion efficiency of thin-film silicon solar cells, the minimization of reflection losses by effective light trapping is essential. Light trapping is achieved by introducing textured surfaces in the layer stack of a solar cell. The incoming light is scattered at the textured interfaces, the light paths within the absorber layer are enhanced and the chance of absorption rises. This work aims to develop an industrial feasible laser-based process for the texturing of the aluminium-doped zinc oxide (ZnO:Al) layer used as front contact in solar cells. While wet chemical etching of the ZnO:Al is an established process for the texturing, a laser-based process offers higher flexibility and controllability of texture scattering properties. Accordingly, the light trapping can be engineered to fit the needs of a solar cell. Within this work, five laser-based processing techniques are evaluated for their applicability to texture ZnO:Al layers in an industrial environment. The direct writing of textures is capable of producing the right feature sizes and is highly flexible. However, it has strong demands on the experimental setup and requires long processing times. Refocusing the laser light by a particle lens array as well as laser-induced chemical etching also lack the industrial feasibility due to the complex processing setup. The creation of laser-induced periodical surface structures (LIPSS) by ultra-short pulse lasers promises small feature sizes with a simple setup. However, the flexibility of feature sizes and shapes is limited. Only direct laser interference patterning (DLIP) is capable of producing a large variety of adjustable textures with right-sized features while being able to cover large areas in reasonable amounts of time with an industrial feasible processing setup. To further investigate DLIP processing, a highly exible three-beam interference setup was designed and implemented. Within the setup, the beam properties of the three partial beams can be adjusted completely independently. By controlling power, polarization and angle of incidence of the individual beams, the intensity distribution within the overlapping volume is adjusted. This intensity distribution then translates to a topography on the ZnO:Al sample. With one single laser pulse, hundreds of thousands strictly periodic micrometer and submicrometer-sized features are created. [...]
000828398 536__ $$0G:(DE-HGF)POF3-121$$a121 - Solar cells of the next generation (POF3-121)$$cPOF3-121$$fPOF III$$x0
000828398 650_7 $$xDiss.
000828398 8564_ $$uhttps://juser.fz-juelich.de/record/828398/files/Energie_Umwelt_359.pdf$$yOpenAccess
000828398 8564_ $$uhttps://juser.fz-juelich.de/record/828398/files/Energie_Umwelt_359.gif?subformat=icon$$xicon$$yOpenAccess
000828398 8564_ $$uhttps://juser.fz-juelich.de/record/828398/files/Energie_Umwelt_359.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000828398 8564_ $$uhttps://juser.fz-juelich.de/record/828398/files/Energie_Umwelt_359.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000828398 8564_ $$uhttps://juser.fz-juelich.de/record/828398/files/Energie_Umwelt_359.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000828398 8564_ $$uhttps://juser.fz-juelich.de/record/828398/files/Energie_Umwelt_359.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000828398 909CO $$ooai:juser.fz-juelich.de:828398$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000828398 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000828398 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000828398 9141_ $$y2017
000828398 9131_ $$0G:(DE-HGF)POF3-121$$1G:(DE-HGF)POF3-120$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lErneuerbare Energien$$vSolar cells of the next generation$$x0
000828398 920__ $$lyes
000828398 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0
000828398 9801_ $$aFullTexts
000828398 980__ $$aphd
000828398 980__ $$aVDB
000828398 980__ $$aUNRESTRICTED
000828398 980__ $$abook
000828398 980__ $$aI:(DE-Juel1)IEK-5-20101013
000828398 981__ $$aI:(DE-Juel1)IMD-3-20101013