000828405 001__ 828405
000828405 005__ 20240619091226.0
000828405 0247_ $$2Handle$$a2128/14037
000828405 0247_ $$2URN$$aurn:nbn:de:0001-2017032812
000828405 0247_ $$2ISSN$$a1866-1807
000828405 020__ $$a978-3-95806-185-9
000828405 037__ $$aFZJ-2017-02366
000828405 041__ $$aEnglish
000828405 1001_ $$0P:(DE-Juel1)156302$$aCai, Biya$$b0$$eCorresponding author$$gfemale$$ufzj
000828405 245__ $$aManipulating the Structural and ElectronicProperties of Epitaxial NaNbO$_{3}$ Films via Strainand Stoichiometry$$f- 2017-03-28
000828405 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek,  Verlag$$c2016
000828405 300__ $$aVI, 114 S.
000828405 3367_ $$2DataCite$$aOutput Types/Dissertation
000828405 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$mbook
000828405 3367_ $$2ORCID$$aDISSERTATION
000828405 3367_ $$2BibTeX$$aPHDTHESIS
000828405 3367_ $$02$$2EndNote$$aThesis
000828405 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s1490680681_14620
000828405 3367_ $$2DRIVER$$adoctoralThesis
000828405 4900_ $$aSchriften des Forschungszentrums Jülich. Reihe Schlüsseltechnologien / Key Technologies$$v136
000828405 502__ $$aUniversität Köln, Diss., 2016$$bDr.$$cUniversität Köln$$d2016
000828405 520__ $$aDue to their intriguing dielectric, pyroelectric, elasto-electric, or opto-electric properties, oxide ferroelectrics are vital candidates for the fabrication of most electronics. However, these extraordinary properties exist mainly in the temperature regime around the ferroelectric phase transition, which is usually several hundreds of K away from room temperature. Therefore, the manipulation of oxide ferroelectrics, especially moving the ferroelectric transition towards room temperature, is of great interest for application and also basic research. In this thesis, we demonstrate this using examples of NaNbO$_{3}$ films. We show that the transition temperature of these films can be modified via plastic strain caused by epitaxial film growth on a structurally mismatched substrate, and this strain can be fixed by controlling the stoichiometry. The structural and electronic properties of Na$_{1+x}$NbO$_{3+δ}$ thin films are carefully examined byamong others XRD (e.g. RSM) and TEM and cryoelectronic measurements. Especially the electronic features are carefully analyzed via specially developed interdigitated electrodes in combination with integrated temperature sensor and heater. The electronic data are interpreted using existing as well as novel theories and models, they are proved to be closely correlated to the structural characteristics. The major results are:- Na$_{1+x}$NbO$_{3+δ}$ thin films can be grown epitaxially on (110)NdGaO$_{3}$ with a thickness up to 140nm (thicker films have not been studied). Plastic relaxation of the compressive strain sets in when the thickness of the film exceeds approximately 10 – 15 nm. Films with excess Na are mainly composed of NaNbO$_{3}$ with minor contribution of Na$_{3}$NbO$_{4}$. The latter phase seems to form nanoprecipitates that are homogeneously distributed in the NaNbO$_{3}$ film which helps to stabilize the film and reduce the relaxation of the strain. - For the nominally stoichiometric films, the compressive strain leads to a broad and frequency-dispersive phase transition at lower temperature (125 – 147 K). This could be either a new transition or a shift in temperature of a known transition. Considering the broadness and frequency dispersion of the transition, this is actually a transition from the dielectric state at high temperature to a relaxor-type ferroelectric state at low temperature. The latter is based on the formation of polar nano-regions (PNRs). Using the electric field dependence of the freezing temperature, allows a direct estimation of the volume (70 to270 nm$^{3}$) and diameter (5.2 to 8 nm, spherical approximation) of the PNRs. The values confirm with literature values which were measured by other technologies. [...]
000828405 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000828405 650_7 $$xDiss.
000828405 8564_ $$uhttps://juser.fz-juelich.de/record/828405/files/Schluesseltech_136.pdf$$yOpenAccess
000828405 8564_ $$uhttps://juser.fz-juelich.de/record/828405/files/Schluesseltech_136.gif?subformat=icon$$xicon$$yOpenAccess
000828405 8564_ $$uhttps://juser.fz-juelich.de/record/828405/files/Schluesseltech_136.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000828405 8564_ $$uhttps://juser.fz-juelich.de/record/828405/files/Schluesseltech_136.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000828405 8564_ $$uhttps://juser.fz-juelich.de/record/828405/files/Schluesseltech_136.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000828405 8564_ $$uhttps://juser.fz-juelich.de/record/828405/files/Schluesseltech_136.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000828405 909CO $$ooai:juser.fz-juelich.de:828405$$pdnbdelivery$$pVDB$$pdriver$$purn$$popen_access$$popenaire
000828405 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000828405 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000828405 9141_ $$y2017
000828405 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156302$$aForschungszentrum Jülich$$b0$$kFZJ
000828405 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000828405 920__ $$lyes
000828405 9201_ $$0I:(DE-Juel1)PGI-8-20110106$$kPGI-8$$lBioelektronik$$x0
000828405 9201_ $$0I:(DE-Juel1)ICS-8-20110106$$kICS-8$$lBioelektronik$$x1
000828405 9801_ $$aFullTexts
000828405 980__ $$aphd
000828405 980__ $$aVDB
000828405 980__ $$aUNRESTRICTED
000828405 980__ $$abook
000828405 980__ $$aI:(DE-Juel1)PGI-8-20110106
000828405 980__ $$aI:(DE-Juel1)ICS-8-20110106
000828405 981__ $$aI:(DE-Juel1)IBI-3-20200312