000828406 001__ 828406
000828406 005__ 20220930130119.0
000828406 0247_ $$2doi$$a10.1371/journal.pone.0173363
000828406 0247_ $$2Handle$$a2128/14009
000828406 0247_ $$2pmid$$apmid:28273176
000828406 0247_ $$2WOS$$aWOS:000396073700055
000828406 0247_ $$2altmetric$$aaltmetric:17143845
000828406 037__ $$aFZJ-2017-02367
000828406 082__ $$a500
000828406 1001_ $$0P:(DE-Juel1)131880$$aPopovych, Oleksandr V.$$b0$$eCorresponding author
000828406 245__ $$aPulsatile desynchronizing delayed feedback for closed-loop deep brain stimulation
000828406 260__ $$aLawrence, Kan.$$bPLoS$$c2017
000828406 3367_ $$2DRIVER$$aarticle
000828406 3367_ $$2DataCite$$aOutput Types/Journal article
000828406 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1490341758_17087
000828406 3367_ $$2BibTeX$$aARTICLE
000828406 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000828406 3367_ $$00$$2EndNote$$aJournal Article
000828406 520__ $$aHigh-frequency (HF) deep brain stimulation (DBS) is the gold standard for the treatment of medically refractory movement disorders like Parkinson’s disease, essential tremor, and dystonia, with a significant potential for application to other neurological diseases. The standard setup of HF DBS utilizes an open-loop stimulation protocol, where a permanent HF electrical pulse train is administered to the brain target areas irrespectively of the ongoing neuronal dynamics. Recent experimental and clinical studies demonstrate that a closed-loop, adaptive DBS might be superior to the open-loop setup. We here combine the notion of the adaptive high-frequency stimulation approach, that aims at delivering stimulation adapted to the extent of appropriately detected biomarkers, with specifically desynchronizing stimulation protocols. To this end, we extend the delayed feedback stimulation methods, which are intrinsically closed-loop techniques and specifically designed to desynchronize abnormal neuronal synchronization, to pulsatile electrical brain stimulation. We show that permanent pulsatile high-frequency stimulation subjected to an amplitude modulation by linear or nonlinear delayed feedback methods can effectively and robustly desynchronize a STN-GPe network of model neurons and suggest this approach for desynchronizing closed-loop DBS.
000828406 536__ $$0G:(DE-HGF)POF3-572$$a572 - (Dys-)function and Plasticity (POF3-572)$$cPOF3-572$$fPOF III$$x0
000828406 588__ $$aDataset connected to CrossRef
000828406 7001_ $$0P:(DE-Juel1)131874$$aLysyansky, Borys$$b1
000828406 7001_ $$0P:(DE-HGF)0$$aRosenblum, Michael$$b2
000828406 7001_ $$0P:(DE-HGF)0$$aPikovsky, Arkady$$b3
000828406 7001_ $$0P:(DE-Juel1)131884$$aTass, Peter A.$$b4
000828406 773__ $$0PERI:(DE-600)2267670-3$$a10.1371/journal.pone.0173363$$gVol. 12, no. 3, p. e0173363 -$$n3$$pe0173363 -$$tPLoS one$$v12$$x1932-6203$$y2017
000828406 8564_ $$uhttps://juser.fz-juelich.de/record/828406/files/journal.pone.0173363.pdf$$yOpenAccess
000828406 8564_ $$uhttps://juser.fz-juelich.de/record/828406/files/journal.pone.0173363.gif?subformat=icon$$xicon$$yOpenAccess
000828406 8564_ $$uhttps://juser.fz-juelich.de/record/828406/files/journal.pone.0173363.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000828406 8564_ $$uhttps://juser.fz-juelich.de/record/828406/files/journal.pone.0173363.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000828406 8564_ $$uhttps://juser.fz-juelich.de/record/828406/files/journal.pone.0173363.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000828406 8564_ $$uhttps://juser.fz-juelich.de/record/828406/files/journal.pone.0173363.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000828406 8767_ $$92017-03-31$$d2017-03-31$$eAPC$$jDeposit$$lDeposit: PLoS$$pPONE-D-16-38817$$zUSD 1495,-
000828406 909CO $$ooai:juser.fz-juelich.de:828406$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000828406 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131880$$aForschungszentrum Jülich$$b0$$kFZJ
000828406 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131884$$aForschungszentrum Jülich$$b4$$kFZJ
000828406 9131_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0
000828406 9141_ $$y2017
000828406 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000828406 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000828406 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000828406 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000828406 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000828406 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPLOS ONE : 2015
000828406 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000828406 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000828406 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000828406 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000828406 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000828406 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000828406 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000828406 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000828406 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000828406 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000828406 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
000828406 980__ $$ajournal
000828406 980__ $$aVDB
000828406 980__ $$aUNRESTRICTED
000828406 980__ $$aI:(DE-Juel1)INM-7-20090406
000828406 9801_ $$aFullTexts
000828406 980__ $$aAPC