000828407 001__ 828407
000828407 005__ 20240619091226.0
000828407 0247_ $$2Handle$$a2128/14145
000828407 0247_ $$2ISSN$$a1866-1807
000828407 020__ $$a978-3-95806-188-0
000828407 037__ $$aFZJ-2017-02368
000828407 041__ $$aEnglish
000828407 1001_ $$0P:(DE-Juel1)168392$$aWang, Junmiao$$b0$$eCorresponding author$$ufzj
000828407 245__ $$aSurface Potential of Metallic Surfaces and Self-Assembling Organic Monolayers in Various Electrolytes$$f- 2017-03-31
000828407 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek,  Verlag$$c2016
000828407 300__ $$aII, 58 S.
000828407 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$mbook
000828407 3367_ $$2DataCite$$aOutput Types/Supervised Student Publication
000828407 3367_ $$02$$2EndNote$$aThesis
000828407 3367_ $$2BibTeX$$aMASTERSTHESIS
000828407 3367_ $$2DRIVER$$amasterThesis
000828407 3367_ $$0PUB:(DE-HGF)19$$2PUB:(DE-HGF)$$aMaster Thesis$$bmaster$$mmaster$$s1491543397_26076
000828407 3367_ $$2ORCID$$aSUPERVISED_STUDENT_PUBLICATION
000828407 4900_ $$aSchriften des Forschungszentrums Jülich. Reihe Schlüsseltechnologien / Key Technologies$$v137
000828407 502__ $$aRWTH Aachen, Masterarbeit, 2016$$bMS$$cRWTH Aachen$$d2016
000828407 520__ $$aThe aim of this thesis is to systematically investigate the ζ potential of different surfaces (polypropylene, borosilicate glass, Pt and Au thin films, and self-assembling monolayer) in different chloride electrolytes XCl (X = Li, Na, or K), focusing on the pH- and concentration-dependent ζ potential and the surface treatment with oxygen. The experiments were performed with a modified “SurPASS Electrokinetic Analyzer” using the streaming potential and streaming current methods. The pH-dependent ζ potential analysis of borosilicate glass, Pt, and Au shows that, Pt possesses the highest ζ potential, followed by borosilicate glass and Au for all chloride electrolytes. The impact of the different electrolytes on the ζ potential is more complex. The oxygen activation of the metallic surfaces seems to lead to the formation of a thin oxide layer, which seems to be less stable for Pt than for Au, whereas we obtained a stable oxygen activation for the oxide borosilicate glass. At large Debye length (i.e. low electrolyte concentration), the ζ potential changes linearly with decreasing Debye length down to a “critical” Debye length. The “critical” Debye length is different for the different surfaces: 0.7 – 0.9 nm for borosilicate glass, 0.5 – 1.2 nm for Pt, and 1.35 – 2 nm for APTES. Below the “critical” Debye length, the ζ potential drops strongly. We explain the unusual and transient streaming current-pressure correlation in this regime by a complex adsorption/desorption process for the ions at the surface. As a result, the classic electrical double layer model has to be modified for high electrolyte concentrations. For organic layers this is even more complex, since several surface contributions arising from the molecules and the carrier have to be taken into account.
000828407 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000828407 650_7 $$xMasterarbeit
000828407 8564_ $$uhttps://juser.fz-juelich.de/record/828407/files/Schluesseltech_137.pdf$$yOpenAccess
000828407 8564_ $$uhttps://juser.fz-juelich.de/record/828407/files/Schluesseltech_137.gif?subformat=icon$$xicon$$yOpenAccess
000828407 8564_ $$uhttps://juser.fz-juelich.de/record/828407/files/Schluesseltech_137.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000828407 8564_ $$uhttps://juser.fz-juelich.de/record/828407/files/Schluesseltech_137.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000828407 8564_ $$uhttps://juser.fz-juelich.de/record/828407/files/Schluesseltech_137.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000828407 8564_ $$uhttps://juser.fz-juelich.de/record/828407/files/Schluesseltech_137.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000828407 909CO $$ooai:juser.fz-juelich.de:828407$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000828407 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000828407 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000828407 9141_ $$y2017
000828407 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168392$$aForschungszentrum Jülich$$b0$$kFZJ
000828407 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000828407 920__ $$lyes
000828407 9201_ $$0I:(DE-Juel1)PGI-8-20110106$$kPGI-8$$lBioelektronik$$x0
000828407 9201_ $$0I:(DE-Juel1)ICS-8-20110106$$kICS-8$$lBioelektronik$$x1
000828407 9801_ $$aFullTexts
000828407 980__ $$amaster
000828407 980__ $$aVDB
000828407 980__ $$abook
000828407 980__ $$aI:(DE-Juel1)PGI-8-20110106
000828407 980__ $$aI:(DE-Juel1)ICS-8-20110106
000828407 980__ $$aUNRESTRICTED
000828407 981__ $$aI:(DE-Juel1)IBI-3-20200312