000828420 001__ 828420
000828420 005__ 20210129230106.0
000828420 0247_ $$2doi$$a10.1021/acsami.6b15279
000828420 0247_ $$2ISSN$$a1944-8244
000828420 0247_ $$2ISSN$$a1944-8252
000828420 0247_ $$2WOS$$aWOS:000396801200075
000828420 037__ $$aFZJ-2017-02381
000828420 082__ $$a540
000828420 1001_ $$0P:(DE-Juel1)161530$$aSchulte-Braucks, C.$$b0$$eCorresponding author
000828420 245__ $$aCorrelation of Bandgap Reduction with Inversion Response in (Si)GeSn/High-k/Metal Stacks
000828420 260__ $$aWashington, DC$$bSoc.$$c2017
000828420 3367_ $$2DRIVER$$aarticle
000828420 3367_ $$2DataCite$$aOutput Types/Journal article
000828420 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1490613872_2586
000828420 3367_ $$2BibTeX$$aARTICLE
000828420 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000828420 3367_ $$00$$2EndNote$$aJournal Article
000828420 520__ $$aThe bandgap tunability of (Si)GeSn group IV semiconductors opens a new era in Si-technology. Depending on the Si/Sn contents, direct and indirect bandgaps in the range of 0.4–0.8 eV can be obtained, offering a broad spectrum of both photonic and low power electronic applications. In this work, we systematically studied capacitance–voltage characteristics of high-k/metal gate stacks formed on GeSn and SiGeSn alloys with Sn-contents ranging from 0 to 14 at. % and Si-contents from 0 to 10 at. % particularly focusing on the minority carrier inversion response. A clear correlation between the Sn-induced shrinkage of the bandgap energy and enhanced minority carrier response was confirmed using temperature and frequency dependent capacitance voltage-measurements, in good agreement with k.p theory predictions and photoluminescence measurements of the analyzed epilayers as reported earlier. The enhanced minority generation rate for higher Sn-contents can be firmly linked to the bandgap reduction in the GeSn epilayer without significant influence of substrate/interface effects. It thus offers a unique possibility to analyze intrinsic defects in (Si)GeSn epilayers. The extracted dominant defect level for minority carrier inversion lies approximately 0.4 eV above the valence band edge in the studied Sn-content range (0–12.5 at. %). This finding is of critical importance since it shows that the presence of Sn by itself does not impair the minority carrier lifetime. Therefore, the continuous improvement of (Si)GeSn material quality should yield longer nonradiative recombination times which are required for the fabrication of efficient light detectors and to obtain room temperature lasing action.
000828420 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000828420 536__ $$0G:(EU-Grant)619509$$aE2SWITCH - Energy Efficient Tunnel FET Switches and Circuits (619509)$$c619509$$fFP7-ICT-2013-11$$x1
000828420 588__ $$aDataset connected to CrossRef
000828420 7001_ $$0P:(DE-Juel1)164261$$aNarimani, K.$$b1$$ufzj
000828420 7001_ $$0P:(DE-Juel1)165997$$aGlass, S.$$b2$$ufzj
000828420 7001_ $$0P:(DE-Juel1)161247$$avon den Driesch, N.$$b3
000828420 7001_ $$0P:(DE-HGF)0$$aHartmann, J. M.$$b4
000828420 7001_ $$0P:(DE-HGF)0$$aIkonic, Z.$$b5
000828420 7001_ $$0P:(DE-HGF)0$$aAfanas’ev, V. V.$$b6
000828420 7001_ $$0P:(DE-Juel1)128649$$aZhao, Q. T.$$b7$$ufzj
000828420 7001_ $$0P:(DE-Juel1)128609$$aMantl, S.$$b8$$ufzj
000828420 7001_ $$0P:(DE-Juel1)125569$$aBuca, D.$$b9$$ufzj
000828420 773__ $$0PERI:(DE-600)2467494-1$$a10.1021/acsami.6b15279$$gVol. 9, no. 10, p. 9102 - 9109$$n10$$p9102 - 9109$$tACS applied materials & interfaces$$v9$$x1944-8244$$y2017
000828420 8564_ $$uhttps://juser.fz-juelich.de/record/828420/files/acsami.6b15279.pdf$$yRestricted
000828420 8564_ $$uhttps://juser.fz-juelich.de/record/828420/files/acsami.6b15279.gif?subformat=icon$$xicon$$yRestricted
000828420 8564_ $$uhttps://juser.fz-juelich.de/record/828420/files/acsami.6b15279.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000828420 8564_ $$uhttps://juser.fz-juelich.de/record/828420/files/acsami.6b15279.jpg?subformat=icon-180$$xicon-180$$yRestricted
000828420 8564_ $$uhttps://juser.fz-juelich.de/record/828420/files/acsami.6b15279.jpg?subformat=icon-640$$xicon-640$$yRestricted
000828420 8564_ $$uhttps://juser.fz-juelich.de/record/828420/files/acsami.6b15279.pdf?subformat=pdfa$$xpdfa$$yRestricted
000828420 909CO $$ooai:juser.fz-juelich.de:828420$$pec_fundedresources$$pVDB$$popenaire
000828420 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161530$$aForschungszentrum Jülich$$b0$$kFZJ
000828420 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164261$$aForschungszentrum Jülich$$b1$$kFZJ
000828420 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165997$$aForschungszentrum Jülich$$b2$$kFZJ
000828420 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161247$$aForschungszentrum Jülich$$b3$$kFZJ
000828420 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128649$$aForschungszentrum Jülich$$b7$$kFZJ
000828420 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128609$$aForschungszentrum Jülich$$b8$$kFZJ
000828420 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125569$$aForschungszentrum Jülich$$b9$$kFZJ
000828420 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000828420 9141_ $$y2017
000828420 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000828420 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000828420 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000828420 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS APPL MATER INTER : 2015
000828420 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000828420 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000828420 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000828420 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000828420 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000828420 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000828420 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACS APPL MATER INTER : 2015
000828420 920__ $$lyes
000828420 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000828420 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000828420 980__ $$ajournal
000828420 980__ $$aVDB
000828420 980__ $$aI:(DE-Juel1)PGI-9-20110106
000828420 980__ $$aI:(DE-82)080009_20140620
000828420 980__ $$aUNRESTRICTED