Home > Publications database > Correlation of Bandgap Reduction with Inversion Response in (Si)GeSn/High-k/Metal Stacks > print |
001 | 828420 | ||
005 | 20210129230106.0 | ||
024 | 7 | _ | |a 10.1021/acsami.6b15279 |2 doi |
024 | 7 | _ | |a 1944-8244 |2 ISSN |
024 | 7 | _ | |a 1944-8252 |2 ISSN |
024 | 7 | _ | |a WOS:000396801200075 |2 WOS |
037 | _ | _ | |a FZJ-2017-02381 |
082 | _ | _ | |a 540 |
100 | 1 | _ | |a Schulte-Braucks, C. |0 P:(DE-Juel1)161530 |b 0 |e Corresponding author |
245 | _ | _ | |a Correlation of Bandgap Reduction with Inversion Response in (Si)GeSn/High-k/Metal Stacks |
260 | _ | _ | |a Washington, DC |c 2017 |b Soc. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1490613872_2586 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The bandgap tunability of (Si)GeSn group IV semiconductors opens a new era in Si-technology. Depending on the Si/Sn contents, direct and indirect bandgaps in the range of 0.4–0.8 eV can be obtained, offering a broad spectrum of both photonic and low power electronic applications. In this work, we systematically studied capacitance–voltage characteristics of high-k/metal gate stacks formed on GeSn and SiGeSn alloys with Sn-contents ranging from 0 to 14 at. % and Si-contents from 0 to 10 at. % particularly focusing on the minority carrier inversion response. A clear correlation between the Sn-induced shrinkage of the bandgap energy and enhanced minority carrier response was confirmed using temperature and frequency dependent capacitance voltage-measurements, in good agreement with k.p theory predictions and photoluminescence measurements of the analyzed epilayers as reported earlier. The enhanced minority generation rate for higher Sn-contents can be firmly linked to the bandgap reduction in the GeSn epilayer without significant influence of substrate/interface effects. It thus offers a unique possibility to analyze intrinsic defects in (Si)GeSn epilayers. The extracted dominant defect level for minority carrier inversion lies approximately 0.4 eV above the valence band edge in the studied Sn-content range (0–12.5 at. %). This finding is of critical importance since it shows that the presence of Sn by itself does not impair the minority carrier lifetime. Therefore, the continuous improvement of (Si)GeSn material quality should yield longer nonradiative recombination times which are required for the fabrication of efficient light detectors and to obtain room temperature lasing action. |
536 | _ | _ | |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521) |0 G:(DE-HGF)POF3-521 |c POF3-521 |f POF III |x 0 |
536 | _ | _ | |a E2SWITCH - Energy Efficient Tunnel FET Switches and Circuits (619509) |0 G:(EU-Grant)619509 |c 619509 |f FP7-ICT-2013-11 |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Narimani, K. |0 P:(DE-Juel1)164261 |b 1 |u fzj |
700 | 1 | _ | |a Glass, S. |0 P:(DE-Juel1)165997 |b 2 |u fzj |
700 | 1 | _ | |a von den Driesch, N. |0 P:(DE-Juel1)161247 |b 3 |
700 | 1 | _ | |a Hartmann, J. M. |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Ikonic, Z. |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Afanas’ev, V. V. |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Zhao, Q. T. |0 P:(DE-Juel1)128649 |b 7 |u fzj |
700 | 1 | _ | |a Mantl, S. |0 P:(DE-Juel1)128609 |b 8 |u fzj |
700 | 1 | _ | |a Buca, D. |0 P:(DE-Juel1)125569 |b 9 |u fzj |
773 | _ | _ | |a 10.1021/acsami.6b15279 |g Vol. 9, no. 10, p. 9102 - 9109 |0 PERI:(DE-600)2467494-1 |n 10 |p 9102 - 9109 |t ACS applied materials & interfaces |v 9 |y 2017 |x 1944-8244 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/828420/files/acsami.6b15279.pdf |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/828420/files/acsami.6b15279.gif?subformat=icon |x icon |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/828420/files/acsami.6b15279.jpg?subformat=icon-1440 |x icon-1440 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/828420/files/acsami.6b15279.jpg?subformat=icon-180 |x icon-180 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/828420/files/acsami.6b15279.jpg?subformat=icon-640 |x icon-640 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/828420/files/acsami.6b15279.pdf?subformat=pdfa |x pdfa |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:828420 |p openaire |p VDB |p ec_fundedresources |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)161530 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)164261 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)165997 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)161247 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)128649 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)128609 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)125569 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-520 |0 G:(DE-HGF)POF3-521 |2 G:(DE-HGF)POF3-500 |v Controlling Electron Charge-Based Phenomena |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ACS APPL MATER INTER : 2015 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b ACS APPL MATER INTER : 2015 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-9-20110106 |k PGI-9 |l Halbleiter-Nanoelektronik |x 0 |
920 | 1 | _ | |0 I:(DE-82)080009_20140620 |k JARA-FIT |l JARA-FIT |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)PGI-9-20110106 |
980 | _ | _ | |a I:(DE-82)080009_20140620 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|