000828436 001__ 828436
000828436 005__ 20210129230107.0
000828436 0247_ $$2doi$$a10.1016/j.mri.2016.11.024
000828436 0247_ $$2ISSN$$a0730-725X
000828436 0247_ $$2ISSN$$a1873-5894
000828436 0247_ $$2WOS$$aWOS:000396382200031
000828436 0247_ $$2altmetric$$aaltmetric:14646775
000828436 0247_ $$2pmid$$apmid:27916658
000828436 037__ $$aFZJ-2017-02397
000828436 082__ $$a610
000828436 1001_ $$0P:(DE-HGF)0$$aChen, Ying$$b0
000828436 245__ $$aReferenceless one-dimensional Nyquist ghost correction in multicoil single-shot spatiotemporally encoded MRI
000828436 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2017
000828436 3367_ $$2DRIVER$$aarticle
000828436 3367_ $$2DataCite$$aOutput Types/Journal article
000828436 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1490357372_17090
000828436 3367_ $$2BibTeX$$aARTICLE
000828436 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000828436 3367_ $$00$$2EndNote$$aJournal Article
000828436 520__ $$aSingle-shot spatiotemporally encoded (SPEN) MRI is a novel fast imaging method capable of retaining the time efficiency of single-shot echo planar imaging (EPI) but with distortion artifacts significantly reduced. Akin to EPI, the phase inconsistencies between mismatched even and odd echoes also result in the so-called Nyquist ghosts. However, the characteristic of the SPEN signals provides the possibility of obtaining ghost-free images directly from even and odd echoes respectively, without acquiring additional reference scans. In this paper, a theoretical analysis of the Nyquist ghosts manifested in single-shot SPEN MRI is presented, a one-dimensional correction scheme is put forward capable of maintaining definition of image features without blurring when the phase inconsistency along SPEN encoding direction is negligible, and a technique is introduced for convenient and robust correction of data from multi-channel receiver coils. The effectiveness of the proposed processing pipeline is validated by a series of experiments conducted on simulation data, in vivo rats and healthy human brains. The robustness of the method is further verified by implementing distortion correction on ghost corrected data
000828436 536__ $$0G:(DE-HGF)POF3-573$$a573 - Neuroimaging (POF3-573)$$cPOF3-573$$fPOF III$$x0
000828436 588__ $$aDataset connected to CrossRef
000828436 7001_ $$0P:(DE-Juel1)156164$$aLiao, Yupeng$$b1
000828436 7001_ $$0P:(DE-HGF)0$$aYuan, Lisha$$b2
000828436 7001_ $$0P:(DE-HGF)0$$aLiu, Hui$$b3
000828436 7001_ $$0P:(DE-Juel1)141899$$aYun, Seong Dae$$b4
000828436 7001_ $$0P:(DE-Juel1)131794$$aShah, Nadim Joni$$b5
000828436 7001_ $$0P:(DE-HGF)0$$aChen, Zhong$$b6
000828436 7001_ $$0P:(DE-HGF)0$$aZhong, Jianhui$$b7$$eCorresponding author
000828436 773__ $$0PERI:(DE-600)1500646-3$$a10.1016/j.mri.2016.11.024$$gVol. 37, p. 222 - 233$$p222 - 233$$tMagnetic resonance imaging$$v37$$x0730-725X$$y2017
000828436 8564_ $$uhttps://juser.fz-juelich.de/record/828436/files/1-s2.0-S0730725X16302375-main.pdf$$yRestricted
000828436 8564_ $$uhttps://juser.fz-juelich.de/record/828436/files/1-s2.0-S0730725X16302375-main.gif?subformat=icon$$xicon$$yRestricted
000828436 8564_ $$uhttps://juser.fz-juelich.de/record/828436/files/1-s2.0-S0730725X16302375-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000828436 8564_ $$uhttps://juser.fz-juelich.de/record/828436/files/1-s2.0-S0730725X16302375-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000828436 8564_ $$uhttps://juser.fz-juelich.de/record/828436/files/1-s2.0-S0730725X16302375-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000828436 8564_ $$uhttps://juser.fz-juelich.de/record/828436/files/1-s2.0-S0730725X16302375-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000828436 909CO $$ooai:juser.fz-juelich.de:828436$$pVDB
000828436 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156164$$aForschungszentrum Jülich$$b1$$kFZJ
000828436 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)141899$$aForschungszentrum Jülich$$b4$$kFZJ
000828436 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b5$$kFZJ
000828436 9131_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x0
000828436 9141_ $$y2017
000828436 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000828436 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000828436 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000828436 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMAGN RESON IMAGING : 2015
000828436 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000828436 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000828436 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000828436 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000828436 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000828436 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000828436 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000828436 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000828436 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000828436 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x0
000828436 9201_ $$0I:(DE-82)080010_20140620$$kJARA-BRAIN$$lJARA-BRAIN$$x1
000828436 980__ $$ajournal
000828436 980__ $$aVDB
000828436 980__ $$aI:(DE-Juel1)INM-4-20090406
000828436 980__ $$aI:(DE-82)080010_20140620
000828436 980__ $$aUNRESTRICTED