001     828436
005     20210129230107.0
024 7 _ |a 10.1016/j.mri.2016.11.024
|2 doi
024 7 _ |a 0730-725X
|2 ISSN
024 7 _ |a 1873-5894
|2 ISSN
024 7 _ |a WOS:000396382200031
|2 WOS
024 7 _ |a altmetric:14646775
|2 altmetric
024 7 _ |a pmid:27916658
|2 pmid
037 _ _ |a FZJ-2017-02397
082 _ _ |a 610
100 1 _ |a Chen, Ying
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Referenceless one-dimensional Nyquist ghost correction in multicoil single-shot spatiotemporally encoded MRI
260 _ _ |a Amsterdam [u.a.]
|c 2017
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1490357372_17090
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Single-shot spatiotemporally encoded (SPEN) MRI is a novel fast imaging method capable of retaining the time efficiency of single-shot echo planar imaging (EPI) but with distortion artifacts significantly reduced. Akin to EPI, the phase inconsistencies between mismatched even and odd echoes also result in the so-called Nyquist ghosts. However, the characteristic of the SPEN signals provides the possibility of obtaining ghost-free images directly from even and odd echoes respectively, without acquiring additional reference scans. In this paper, a theoretical analysis of the Nyquist ghosts manifested in single-shot SPEN MRI is presented, a one-dimensional correction scheme is put forward capable of maintaining definition of image features without blurring when the phase inconsistency along SPEN encoding direction is negligible, and a technique is introduced for convenient and robust correction of data from multi-channel receiver coils. The effectiveness of the proposed processing pipeline is validated by a series of experiments conducted on simulation data, in vivo rats and healthy human brains. The robustness of the method is further verified by implementing distortion correction on ghost corrected data
536 _ _ |a 573 - Neuroimaging (POF3-573)
|0 G:(DE-HGF)POF3-573
|c POF3-573
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Liao, Yupeng
|0 P:(DE-Juel1)156164
|b 1
700 1 _ |a Yuan, Lisha
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Liu, Hui
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Yun, Seong Dae
|0 P:(DE-Juel1)141899
|b 4
700 1 _ |a Shah, Nadim Joni
|0 P:(DE-Juel1)131794
|b 5
700 1 _ |a Chen, Zhong
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Zhong, Jianhui
|0 P:(DE-HGF)0
|b 7
|e Corresponding author
773 _ _ |a 10.1016/j.mri.2016.11.024
|g Vol. 37, p. 222 - 233
|0 PERI:(DE-600)1500646-3
|p 222 - 233
|t Magnetic resonance imaging
|v 37
|y 2017
|x 0730-725X
856 4 _ |u https://juser.fz-juelich.de/record/828436/files/1-s2.0-S0730725X16302375-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828436/files/1-s2.0-S0730725X16302375-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828436/files/1-s2.0-S0730725X16302375-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828436/files/1-s2.0-S0730725X16302375-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828436/files/1-s2.0-S0730725X16302375-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828436/files/1-s2.0-S0730725X16302375-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:828436
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)156164
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)141899
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)131794
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-573
|2 G:(DE-HGF)POF3-500
|v Neuroimaging
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MAGN RESON IMAGING : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)INM-4-20090406
|k INM-4
|l Physik der Medizinischen Bildgebung
|x 0
920 1 _ |0 I:(DE-82)080010_20140620
|k JARA-BRAIN
|l JARA-BRAIN
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-4-20090406
980 _ _ |a I:(DE-82)080010_20140620
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21