000828440 001__ 828440
000828440 005__ 20210129230108.0
000828440 0247_ $$2doi$$a10.2136/vzj2016.06.0051
000828440 0247_ $$2WOS$$aWOS:000396836900003
000828440 0247_ $$2altmetric$$aaltmetric:16053728
000828440 037__ $$aFZJ-2017-02399
000828440 082__ $$a550
000828440 1001_ $$0P:(DE-HGF)0$$aFernández de Vera, Natalia$$b0$$eCorresponding author
000828440 245__ $$aTracer Experiment in a Brownfield Using Geophysics and a Vadose Zone Monitoring System
000828440 260__ $$aMadison, Wis.$$bSSSA$$c2017
000828440 3367_ $$2DRIVER$$aarticle
000828440 3367_ $$2DataCite$$aOutput Types/Journal article
000828440 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1490684167_14620
000828440 3367_ $$2BibTeX$$aARTICLE
000828440 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000828440 3367_ $$00$$2EndNote$$aJournal Article
000828440 520__ $$aA saline tracer infiltration test across the fractured vadose zone of an industrial contaminated site in Belgium was monitored by combining surface and cross-borehole electrical resistivity tomography (ERT) methods with a vadose zone monitoring system (VMS). The VMS provides in situ continuous hydraulic and chemical information on the percolating tracer at multiple depths in the vadose zone. The combination of such high-resolution data with time-lapse geophysical images that capture the spatiotemporal variability of the subsurface improves interpretations of flow and transport, providing a better characterization of infiltration mechanisms and preferential flow paths. The tracer infiltration test was performed over a heterogeneous vadose zone composed of backfilled materials, sands and silts, and unsaturated fractured chalk. Monitoring results during a 5-d period revealed the formation of a tracer plume in the upper backfilled deposits, while some of the tracer migrated laterally following preferential pathways. Slow vertical flow through matrix pores was found to be dominant under dry conditions. Infiltration of small quantities of rain during the test was found to have an influence on the spatial distribution of the plume. Results from long-term monitoring revealed vertical transport of the tracer toward depths that reached 4 m during a time period of 105 d. During that period, fracture and matrix flow mechanisms across the vadose zone were activated as a response to frequent rainfall episodes. The study demonstrates that the interpretation of geophysical images is improved by in situ information from the VMS.
000828440 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000828440 536__ $$0G:(EU-Grant)265063$$aADVOCATE - Advancing Sustainable In Situ Remediation for Contaminated Land and Groundwater (265063)$$c265063$$fFP7-PEOPLE-2010-ITN$$x1
000828440 588__ $$aDataset connected to CrossRef
000828440 7001_ $$0P:(DE-HGF)0$$aBeaujean, Jean$$b1
000828440 7001_ $$0P:(DE-HGF)0$$aJamin, Pierre$$b2
000828440 7001_ $$0P:(DE-HGF)0$$aHakoun, Vivien$$b3
000828440 7001_ $$0P:(DE-Juel1)167367$$aCaterina, David$$b4$$ufzj
000828440 7001_ $$0P:(DE-HGF)0$$aDahan, Ofer$$b5
000828440 7001_ $$0P:(DE-HGF)0$$aVanclooster, Marnik$$b6
000828440 7001_ $$0P:(DE-HGF)0$$aDassargues, Alain$$b7
000828440 7001_ $$0P:(DE-HGF)0$$aNguyen, Frédéric$$b8
000828440 7001_ $$0P:(DE-HGF)0$$aBrouyère, Serge$$b9
000828440 773__ $$0PERI:(DE-600)2088189-7$$a10.2136/vzj2016.06.0051$$gVol. 16, no. 1, p. 0 -$$n1$$p0 -$$tVadose zone journal$$v16$$x1539-1663$$y2017
000828440 8564_ $$uhttps://juser.fz-juelich.de/record/828440/files/vzj-16-1-vzj2016.06.0051.pdf$$yRestricted
000828440 8564_ $$uhttps://juser.fz-juelich.de/record/828440/files/vzj-16-1-vzj2016.06.0051.gif?subformat=icon$$xicon$$yRestricted
000828440 8564_ $$uhttps://juser.fz-juelich.de/record/828440/files/vzj-16-1-vzj2016.06.0051.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000828440 8564_ $$uhttps://juser.fz-juelich.de/record/828440/files/vzj-16-1-vzj2016.06.0051.jpg?subformat=icon-180$$xicon-180$$yRestricted
000828440 8564_ $$uhttps://juser.fz-juelich.de/record/828440/files/vzj-16-1-vzj2016.06.0051.jpg?subformat=icon-640$$xicon-640$$yRestricted
000828440 8564_ $$uhttps://juser.fz-juelich.de/record/828440/files/vzj-16-1-vzj2016.06.0051.pdf?subformat=pdfa$$xpdfa$$yRestricted
000828440 909CO $$ooai:juser.fz-juelich.de:828440$$pec_fundedresources$$pVDB:Earth_Environment$$pVDB$$popenaire
000828440 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Université de Liège$$b0
000828440 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167367$$aForschungszentrum Jülich$$b4$$kFZJ
000828440 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000828440 9141_ $$y2017
000828440 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bVADOSE ZONE J : 2015
000828440 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000828440 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000828440 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000828440 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000828440 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000828440 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000828440 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000828440 920__ $$lyes
000828440 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000828440 980__ $$ajournal
000828440 980__ $$aVDB
000828440 980__ $$aI:(DE-Juel1)IBG-3-20101118
000828440 980__ $$aUNRESTRICTED