000828448 001__ 828448 000828448 005__ 20210129230109.0 000828448 0247_ $$2doi$$a10.1088/1742-5468/aa620d 000828448 0247_ $$2WOS$$aWOS:000397745400001 000828448 037__ $$aFZJ-2017-02407 000828448 082__ $$a530 000828448 1001_ $$0P:(DE-Juel1)168116$$aCao, Shuchao$$b0 000828448 245__ $$aFundamental diagrams for multidirectional pedestrian flows 000828448 260__ $$aBristol$$bIOP Publ.$$c2017 000828448 3367_ $$2DRIVER$$aarticle 000828448 3367_ $$2DataCite$$aOutput Types/Journal article 000828448 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1490614228_2588 000828448 3367_ $$2BibTeX$$aARTICLE 000828448 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000828448 3367_ $$00$$2EndNote$$aJournal Article 000828448 520__ $$aFundamental diagrams for uni-, bi- and multidirectional flows at corridors and crossings are investigated by a series of experiments under laboratory conditions. At high densities pedestrians are forced to make detours or even change the intended destinations. These unintended movements lead to an overestimation of the performance of crossings. To consider these effects in the determination of the capacities the fundamental diagrams are measured using advanced methods. In comparison to classical methods, significant differences relating to the capacities are found. The fundamental diagrams are compared with data of uni-, bi-, and multidirectional flows and with data of the literature. 000828448 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0 000828448 588__ $$aDataset connected to CrossRef 000828448 7001_ $$0P:(DE-Juel1)132266$$aSeyfried, Armin$$b1$$ufzj 000828448 7001_ $$0P:(DE-Juel1)156196$$aZhang, Jun$$b2$$ufzj 000828448 7001_ $$0P:(DE-Juel1)132140$$aHoll, Stefan$$b3$$ufzj 000828448 7001_ $$0P:(DE-HGF)0$$aSong, Weiguo$$b4$$eCorresponding author 000828448 773__ $$0PERI:(DE-600)2138944-5$$a10.1088/1742-5468/aa620d$$gVol. 2017, no. 3, p. 033404 -$$n3$$p033404 -$$tJournal of statistical mechanics: theory and experiment$$v2017$$x1742-5468$$y2017 000828448 8564_ $$uhttps://juser.fz-juelich.de/record/828448/files/Cao_2017_J._Stat._Mech._2017_033404.pdf$$yRestricted 000828448 8564_ $$uhttps://juser.fz-juelich.de/record/828448/files/Cao_2017_J._Stat._Mech._2017_033404.pdf?subformat=pdfa$$xpdfa$$yRestricted 000828448 909CO $$ooai:juser.fz-juelich.de:828448$$pVDB 000828448 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132266$$aForschungszentrum Jülich$$b1$$kFZJ 000828448 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156196$$aForschungszentrum Jülich$$b2$$kFZJ 000828448 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132140$$aForschungszentrum Jülich$$b3$$kFZJ 000828448 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0 000828448 9141_ $$y2017 000828448 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000828448 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ STAT MECH-THEORY E : 2015 000828448 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000828448 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000828448 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000828448 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000828448 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000828448 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000828448 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000828448 920__ $$lyes 000828448 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0 000828448 980__ $$ajournal 000828448 980__ $$aVDB 000828448 980__ $$aI:(DE-Juel1)JSC-20090406 000828448 980__ $$aUNRESTRICTED