000828497 001__ 828497 000828497 005__ 20210129230115.0 000828497 0247_ $$2doi$$a10.1016/j.quaint.2016.02.011 000828497 0247_ $$2ISSN$$a1040-6182 000828497 0247_ $$2ISSN$$a1873-4553 000828497 0247_ $$2WOS$$aWOS:000397933600007 000828497 0247_ $$2altmetric$$aaltmetric:6148087 000828497 037__ $$aFZJ-2017-02455 000828497 082__ $$a550 000828497 1001_ $$0P:(DE-HGF)0$$aGrießinger, Jussi$$b0$$eCorresponding author 000828497 245__ $$aLate Holocene relative humidity history on the southeastern Tibetan plateau inferred from a tree-ring δ $^{18}$ O record: Recent decrease and conditions during the last 1500 years 000828497 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2017 000828497 3367_ $$2DRIVER$$aarticle 000828497 3367_ $$2DataCite$$aOutput Types/Journal article 000828497 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1515071457_1047 000828497 3367_ $$2BibTeX$$aARTICLE 000828497 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000828497 3367_ $$00$$2EndNote$$aJournal Article 000828497 520__ $$aIn recent decades, the Tibetan plateau (TP) experienced a distinctive temperature increase, with fundamental consequences for the hydrological system. As meteorological time-series extending back more than 60 years are scarce, there is a strong need for proxy data providing insight into the regional hydroclimatic history as well as the long-term variability. Within this study, a recently developed annually resolved 1500 year-long tree-ring stable oxygen isotope (δ18O) time from the southeastern TP is presented. Climate–proxy relationships reveal a strong impact of relative humidity (rH) during the summer months (May to September) on tree-ring δ18O, explaining around 45% of its variance. The derived reconstruction of relative humidity reveals a recent trend towards drier conditions on the TP. However, the present low rH level is not unprecedented in regard to the last 1500 years. In comparison to recent climate conditions, the Medieval Warm Period (MWP) was characterized by more stable conditions with higher humidity values. Hydroclimatic conditions during the Little Ice Age (LIA) suggest a contrasting two-phased period, with a clear shift from drier conditions prevailing between 1400 and 1650 AD to more humid conditions since the second half of the 17th century. Comparisons with other local proxies from lake levels and Pollen data from the southern part of the Tibetan plateau indicate a common regional climate forcing during the MWP and the LIA which can be related to changes in summer monsoon activity. However, the strength of the distinct dryness trend during the 20th century seems unique. 000828497 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0 000828497 588__ $$aDataset connected to CrossRef 000828497 7001_ $$0P:(DE-HGF)0$$aBräuning, Achim$$b1 000828497 7001_ $$0P:(DE-HGF)0$$aHelle, Gerhard$$b2 000828497 7001_ $$0P:(DE-HGF)0$$aHochreuther, Philipp$$b3 000828497 7001_ $$0P:(DE-Juel1)129572$$aSchleser, Gerhard, Hans$$b4 000828497 773__ $$0PERI:(DE-600)2002133-1$$a10.1016/j.quaint.2016.02.011$$gVol. 430, p. 52 - 59$$nPart B$$p52 - 59$$tQuaternary international$$v430$$x1040-6182$$y2017 000828497 8564_ $$uhttps://juser.fz-juelich.de/record/828497/files/1-s2.0-S1040618216001373-main.pdf$$yRestricted 000828497 8564_ $$uhttps://juser.fz-juelich.de/record/828497/files/1-s2.0-S1040618216001373-main.gif?subformat=icon$$xicon$$yRestricted 000828497 8564_ $$uhttps://juser.fz-juelich.de/record/828497/files/1-s2.0-S1040618216001373-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted 000828497 8564_ $$uhttps://juser.fz-juelich.de/record/828497/files/1-s2.0-S1040618216001373-main.jpg?subformat=icon-180$$xicon-180$$yRestricted 000828497 8564_ $$uhttps://juser.fz-juelich.de/record/828497/files/1-s2.0-S1040618216001373-main.jpg?subformat=icon-640$$xicon-640$$yRestricted 000828497 8564_ $$uhttps://juser.fz-juelich.de/record/828497/files/1-s2.0-S1040618216001373-main.pdf?subformat=pdfa$$xpdfa$$yRestricted 000828497 909CO $$ooai:juser.fz-juelich.de:828497$$pVDB:Earth_Environment$$pVDB 000828497 9101_ $$0I:(DE-Juel1)IBG-2-3-TAV-20110204$$6P:(DE-Juel1)129572$$aIBG-2-3-TAV$$b4$$k 000828497 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129572$$aForschungszentrum Jülich$$b4$$kFZJ 000828497 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0 000828497 9141_ $$y2017 000828497 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000828497 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bQUATERN INT : 2015 000828497 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000828497 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000828497 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000828497 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000828497 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000828497 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000828497 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000828497 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000828497 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000828497 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000828497 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record 000828497 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000828497 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0 000828497 980__ $$ajournal 000828497 980__ $$aVDB 000828497 980__ $$aI:(DE-Juel1)IBG-3-20101118 000828497 980__ $$aUNRESTRICTED