000828548 001__ 828548
000828548 005__ 20240313094850.0
000828548 037__ $$aFZJ-2017-02502
000828548 041__ $$aEnglish
000828548 1001_ $$0P:(DE-Juel1)161295$$aSprenger, Julia$$b0$$eCorresponding author$$ufzj
000828548 1112_ $$a12th Göttingen Meeting of the German Neuroscience Society$$cGöttingen$$d2017-03-22 - 2017-03-25$$gNWG 2017$$wGermany
000828548 245__ $$aodML-tables: Providing a graphical interface for odML based metadata management
000828548 260__ $$c2017
000828548 3367_ $$033$$2EndNote$$aConference Paper
000828548 3367_ $$2BibTeX$$aINPROCEEDINGS
000828548 3367_ $$2DRIVER$$aconferenceObject
000828548 3367_ $$2ORCID$$aCONFERENCE_POSTER
000828548 3367_ $$2DataCite$$aOutput Types/Conference Poster
000828548 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1491198983_25427$$xAfter Call
000828548 520__ $$aExperimental observations are an essential part of scientific research and are used to validate or reject a scientific hypothesis. In the scientific approach, observations are typically quantified and data are recorded for subsequent analysis. These primary data are always accompanied by information about their origin and the circumstances of their recording. Such information is typically called metadata and includes a variety of information, such as, the date of the recording, a seemingly unimportant change in measurement settings or the expectation of the experimenter (open trial vs. blind trial experiments). Metadata are crucial for performing reproducible data analysis and are essential for the interpretation of the results. They also enable queries to answer scientific questions that researchers did not previously consider (e.g. transversal studies) and are one of the main components for implementing replicable and reproducible research [1]. In addition a comprehensive metadata collection facilitates the communication between members of a project and therefore saves valuable time and effort. In neuroscience, and in particular experimental neurophysiology, the development of approaches to metadata management is an ongoing effort [2]. A promising metadata framework in this field is odML (open metadata Markup Language) [3]. This XML-based language is designed to represent complex metadata collections as hierarchically organized key-value pairs.In practice however, embedding metadata based on the odML framework into workflows for sharing data in concrete use cases of experimental and theoretical groups revealed that generating the structure of an odML document, and later filling it with metadata from the respective sources, involved extensive programming experience [2]. In addition there are always metadata, which require manual entry during or after the experiment. The lack of software support for certain processing steps and editing capabilities in these use cases effectively prevented our experimental partners from using odML to capture metadata into one coherent collection. To address this shortcoming, we developed odML-tables, a software solution that bridges the gap between hierarchical odML and a tabular representation of metadata that is convenient for editing.odML-tables is an open-source software tool implemented in Python, which offers a graphical user interface (GUI) [4,5]. The main features of odML-tables are:1) Generation of a template (tabular) structure facilitating the initial design of an odML structure2) Conversion between odML files and tabular formats (.xls, .csv) in order to enable manual entry and modifications using spreadsheet software (e.g., Microsoft Excel, LibreOffice).3) Filtering metadata by defined search criteria to simplify access to parts of a complex odML structure4) Merging of multiple odML files5) Generation of a comparison table of similar entries within an odML fileWe show how odML-tables can be applied in a sustainable workflow for metadata management and illustrate the practical usage of odML-tables from structuring available metadata to daily enrichment of the metadata collection (cf. also [1,2]).References:[1] Denker, M., & Grün, S. (2016). Designing workflows for the reproducible Analysis of Electrophys-iological Data. In: Brain Inspired Computing, eds: Katrin Amunts, Lucio Grandinetti, Thomas Lippert, Nicolai Petkov. Lecture Notes in Computer Science, Springer. (in press)[2] Zehl, L., Jaillet, F., Stoewer, A., Grewe, J., Sobolev, A., Wachtler, T., Brochier, T., Riehle, A., Denker, M., & Grün, S. Handling Metadata in a Neurophysiology Laboratory. Frontiers in Neuroinformatics, 10, 26.[3] Grewe, J., Wachtler, T., & Benda, J. (2011). A Bottom-up Approach to Data Annotation in Neurophysiology. Frontiers in Neuroinformatics, 5, 16.[4] python-odmltables on PyPi: https://pypi.python.org/pypi/python-odmltables/[5] python-odmltables on GitHub: https://github.com/INM-6/python-odmltables
000828548 536__ $$0G:(DE-HGF)POF3-571$$a571 - Connectivity and Activity (POF3-571)$$cPOF3-571$$fPOF III$$x0
000828548 536__ $$0G:(DE-Juel1)HGF-SMHB-2013-2017$$aSMHB - Supercomputing and Modelling for the Human Brain (HGF-SMHB-2013-2017)$$cHGF-SMHB-2013-2017$$fSMHB$$x1
000828548 536__ $$0G:(EU-Grant)720270$$aHBP SGA1 - Human Brain Project Specific Grant Agreement 1 (720270)$$c720270$$fH2020-Adhoc-2014-20$$x2
000828548 536__ $$0G:(GEPRIS)237833830$$aDFG project 237833830 - Optogenetische Analyse der für kognitive Fähigkeiten zuständigen präfrontal-hippokampalen Netzwerke in der Entwicklung (237833830)$$c237833830$$x3
000828548 536__ $$0G:(GEPRIS)238707842$$aDFG project 238707842 - Kausative Mechanismen mesoskopischer Aktivitätsmuster in der auditorischen Kategorien-Diskrimination (238707842)$$c238707842$$x4
000828548 7001_ $$0P:(DE-Juel1)145394$$aZehl, Lyuba$$b1$$ufzj
000828548 7001_ $$0P:(DE-Juel1)159172$$aCanova, Carlos$$b2$$ufzj
000828548 7001_ $$0P:(DE-Juel1)144168$$aGrün, Sonja$$b3$$ufzj
000828548 7001_ $$0P:(DE-Juel1)144807$$aDenker, Michael$$b4$$ufzj
000828548 909CO $$ooai:juser.fz-juelich.de:828548$$popenaire$$pec_fundedresources$$pVDB
000828548 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161295$$aForschungszentrum Jülich$$b0$$kFZJ
000828548 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145394$$aForschungszentrum Jülich$$b1$$kFZJ
000828548 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159172$$aForschungszentrum Jülich$$b2$$kFZJ
000828548 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144168$$aForschungszentrum Jülich$$b3$$kFZJ
000828548 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144807$$aForschungszentrum Jülich$$b4$$kFZJ
000828548 9131_ $$0G:(DE-HGF)POF3-571$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vConnectivity and Activity$$x0
000828548 9141_ $$y2017
000828548 920__ $$lno
000828548 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
000828548 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x1
000828548 980__ $$aposter
000828548 980__ $$aVDB
000828548 980__ $$aI:(DE-Juel1)INM-6-20090406
000828548 980__ $$aI:(DE-Juel1)IAS-6-20130828
000828548 980__ $$aUNRESTRICTED
000828548 981__ $$aI:(DE-Juel1)IAS-6-20130828