001     828677
005     20210129230133.0
024 7 _ |a 10.1002/pssb.201600283
|2 doi
024 7 _ |a 0031-8957
|2 ISSN
024 7 _ |a 0370-1972
|2 ISSN
024 7 _ |a WOS:000390339000005
|2 WOS
024 7 _ |a altmetric:10363287
|2 altmetric
037 _ _ |a FZJ-2017-02569
082 _ _ |a 530
100 1 _ |a Neumann, Christoph
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Line shape of the Raman 2D peak of graphene in van der Waals heterostructures
260 _ _ |a Weinheim
|c 2016
|b Wiley-VCH70889
264 _ 1 |3 online
|2 Crossref
|b Wiley
|c 2016-08-09
264 _ 1 |3 print
|2 Crossref
|b Wiley
|c 2016-12-01
264 _ 1 |3 print
|2 Crossref
|b Wiley
|c 2016-12-01
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1491208554_25428
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The Raman 2D line of graphene is widely used for device characterization and during device fabrication as it contains valuable information on, e.g., the direction and magnitude of mechanical strain and doping. Here, we present systematic asymmetries in the 2D line shape of exfoliated graphene and graphene grown by chemical vapor deposition. Both graphene crystals are fully encapsulated in van der Waals heterostructures, where hexagonal boron nitride and tungsten diselenide are used as substrate materials. In both material stacks, we find very low doping values and extremely homogeneous strain distributions in the graphene crystal, which is a hall mark of the outstanding electronic quality of these samples. By fitting double Lorentzian functions to the spectra to account for the contributions of inner and outer processes to the 2D peak, we find that the splitting of the sub-peaks, math formulacm−1 (hBN-Gr-WSe2) and math formulacm−1 (hBN-Gr-hBN), is significantly lower than the values reported in previous studies on suspended graphene.
536 _ _ |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|0 G:(DE-HGF)POF3-521
|c POF3-521
|f POF III
|x 0
542 _ _ |i 2015-09-01
|2 Crossref
|u http://doi.wiley.com/10.1002/tdm_license_1.1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Banszerus, Luca
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Schmitz, Michael
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Reichardt, Sven
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Sonntag, Jens
|0 P:(DE-Juel1)167238
|b 4
|u fzj
700 1 _ |a Taniguchi, Takashi
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Watanabe, Kenji
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Beschoten, Bernd
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Stampfer, Christoph
|0 P:(DE-HGF)0
|b 8
773 1 8 |a 10.1002/pssb.201600283
|b : Wiley, 2016-08-09
|n 12
|p 2326-2330
|3 journal-article
|2 Crossref
|t physica status solidi (b)
|v 253
|y 2016
|x 0370-1972
773 _ _ |a 10.1002/pssb.201600283
|g Vol. 253, no. 12, p. 2326 - 2330
|0 PERI:(DE-600)1481096-7
|n 12
|p 2326-2330
|t Physica status solidi / B
|v 253
|y 2016
|x 0370-1972
856 4 _ |u https://juser.fz-juelich.de/record/828677/files/Neumann_et_al-2016-physica_status_solidi_%28b%29.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828677/files/Neumann_et_al-2016-physica_status_solidi_%28b%29.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828677/files/Neumann_et_al-2016-physica_status_solidi_%28b%29.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828677/files/Neumann_et_al-2016-physica_status_solidi_%28b%29.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828677/files/Neumann_et_al-2016-physica_status_solidi_%28b%29.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828677/files/Neumann_et_al-2016-physica_status_solidi_%28b%29.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:828677
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)167238
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 7
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 8
|6 P:(DE-Juel1)142024
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)142024
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-521
|2 G:(DE-HGF)POF3-500
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS STATUS SOLIDI B : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21