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Interplay between nanometer-scale strain variations and externally applied strain in graphene
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We present a molecular modeling study analyzing nanometer-scale strain variations in graphene as a function
of externally applied tensile strain. We consider two different mechanisms that could underlie nanometer-scale
strain variations: static perturbations from lattice imperfections of an underlying substrate and thermal
fluctuations. For both cases we observe a decrease in the out-of-plane atomic displacements with increasing
strain, which is accompanied by an increase in the in-plane displacements. Reflecting the nonlinear elastic
properties of graphene, both trends together yield a nonmonotonic variation of the total displacements with
increasing tensile strain. This variation allows us to test the role of nanometer-scale strain variations in limiting

the carrier mobility of high-quality graphene samples.
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I. INTRODUCTION

Graphene is a promising material with many remark-
able properties [1-6]. However, its experimentally measured
characteristics often do not match those theoretically pre-
dicted [7,8]. Prominently, for example, the carrier mobility
of graphene samples was found to strongly depend on the
fabrication process and type of substrate. On rough SiO,
the mobility of graphene samples is, e.g., limited to a
few ten thousand cm?/Vs [9,10], while using atomically
flat hexagonal boron nitride (hBN) as a substrate allows
mobilities up to several hundred thousands cm?/Vs or more
at low temperatures [11-15]. Notwithstanding, world-record
mobility graphene devices consist of a suspended graphene
sheet and can even reach one million cm?/Vs [3,16-18].
As suspended graphene devices are not very practical, it is
thus imperative to understand and tailor the carrier mobility
limitations in supported graphene. A key element for this will
be the control over the substrate induced interplay between
structural and electronic properties. The truly two-dimensional
nature of graphene makes this interplay, or generally the
electromechanical coupling, very unique and promises tailored
electronic properties by so-called strain engineering [19-30].

The effect of strain on the carriers in graphene is generally
twofold. First, the area of the unit cell is altered resulting in a
redistribution of the charge carrier density in a way that strain
variations give rise to effective electron-hole puddles at low
carrier densities [31,32]. Second, strain generates a so-called
pseudovector potential that is similar to the vector potential of
a real magnetic field [31-39].

It is exactly such a strain-induced randomly varying
pseudovector potential, which recently has been identified as
the limiting mechanism for the carrier mobility in high-quality
graphene devices on a substrate [40-42]. As Couto and
co-workers [40] showed, these strain variations are on a length
scale of a few nanometers such that they act as long-range scat-
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tering centers allowing for pseudospin flips. Thus nanometer-
scale strain variations enable direct backscattering that limits
the carrier mobility in high-quality graphene samples. In fact,
it has been shown that the mobility is inversely proportional
to the strength of nanometer-scale strain variations [40]. As
these strain variations can be noninvasively monitored by
the linewidth of the graphene specific Raman 2D-line [42],
fabrication processes have been recently optimized to suppress
strain variations leading to significant improvements in carrier
mobility [14,15]. For future optimization a thoroughly under-
standing of the interplay between strain variations and external
mechanical influences, such as ‘global’ strain are of great
importance. Also in view of the promise to tailor electronic
properties by strain engineering a detailed knowledge of this
particular interplay is crucial.

In this paper we discuss a molecular modeling study
analyzing this interplay. Under compressive strain nanometer-
scale strain variations may be intricately mingled with the
formation of static ripples [3,43-46]. We therefore focus
our analysis on applied tensile strain. As for the physical
origin of the nanometer-scale strain variations in graphene,
thermal fluctuations as well as frozen ripples from the
fabrication process and atomic defects in substrates like hBN
are conceivable [3,47-52]; we consider both the effect of
thermal fluctuations and of a static Gaussian potential to
model defects in a hBN substrate. For both potential sources
of nanometer-scale strain variations we observe an intriguing
nonmonotonic variation of the average atomic displacements
with increasing externally applied tensile strain. Arising from
the nonlinear elastic properties of graphene, this variation
allows us to predict experimentally observable signatures of
nanometer-scale strain variations in the measurement of the
carrier mobility as well as in the measurement of the linewidths
of the Raman active G- and 2D-mode.

II. METHODS

Aiming for system sizes beyond the reach of first-principles
approaches we base our molecular modeling study on the em-
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FIG. 1. Stress-strain curves for a graphene sheet under tensile
external strain up to 15%. The linear behavior expected for a material
with constant Young’s modulus of 1.02 TPa [1] (blue curve) is
compared to calculated data for strain applied along the zigzag (red
curves) and along the armchair (black curves) directions. The data
obtained with the empirical LCBOP potential (solid lines) matches
the one obtained by first-principles DFT calculations (dotted lines)
within 10%.

pirical long-range carbon bond order potential (LCBOP) [53].
Among a multitude of force fields for carbon materials [53—58]
LCBOP exhibits a range of features that are critical to the
targeted properties. Specifically, it yields sound velocities, a
bending rigidity, and elastic constants that match the exper-
imental values within ~ 10% [53]. Of particular relevance
for the present study is hereby the faithful representation of
the highly nonlinear elastic properties of graphene [59-61].
This is illustrated in Fig. 1, which shows the calculated
stress in a graphene sheet as a function of externally applied
strain as obtained with density-functional theory (DFT) using
the CASTEP package [62] (library pseudopotentials, 650 eV
cutoff energy, and (7 x 7) k-point sampling) and treating
electronic exchange and correlation at the level of the PBE
functional [63].

Already at rather low strain values the stress-strain curve
deviates from the linear behavior expected for a material with
constant Young’s modulus of 1.02 TPa [1]. Reproducing the
findings of Kalosakas et al. [59] the LCBOP data faithfully
reproduces this behavior and achieves a match to the first-
principles calculations within ~ 10%.

All simulations were carried out with the LAMMPS pack-
age [64]. The standard simulation cell contains a rectangular
sheet of graphene with a side length L of approximately 10 nm
(3680 atoms), corresponding to optimized LCBOP carbon-
carbon distances. Periodic boundary conditions are applied
and a vacuum layer of 20 A separates the graphene sheet from
its periodic images. Static nanometer-scale strain variations
induced, e.g., by lattice imperfections in an underlying hBN
substrate are modeled by subjecting the graphene sheet to
the influence of an isotropic Gaussian potential [65,66]. This
potential is characterized by three parameters: its width,
its strength, and its perpendicular distance to the graphene
sheet. Based on the discussion above, the width of the
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FIG. 2. Illustration of the simulation cell and the applied Gaussian
potential. The Gaussian potential has a width of three interatomic
carbon-carbon bonds and a strength of +90 meV. (a) Top view of
the central area of the graphene sheet with all individual C atoms
overlayed with a color map of the Gaussian potential that is applied
in the center of the sheet. (b) Force induced by the Gaussian potential
on the C atoms of an ideal sheet and along a line at y = 50 A (red =
in-plane force, gray = out-of-plane force, lines are superimposed to
guide the eye).

Gaussian potential must be much smaller than 100 nm. We
performed simulations varying the width of the potential
between one and four times the interatomic carbon-carbon
distance in unstrained graphene (1.42-5.68 A), which results
in a strain variation of a few nanometer in size (see below). The
conclusions put forward below are identically derived for all
widths, which is why we restrict the detailed presentation of the
results below to the case of three times the interatomic carbon-
carbon distance. Preceding calculations suggest a maximum
potential difference induced by point defects in hBN of the
order of 100 meV [50-52]. We find this confirmed by our
own DFT calculations for a nitrogen surface vacancy and a
boron interstitial. We correspondingly performed simulations
varying the strength of the Gaussian potential in 10 meV steps
between —100 meV (attractive) and 100 meV (repulsive).
We obtain qualitatively the same results for all cases and
discuss below some selected values for the potential strength.
The perpendicular distance of the Gaussian potential to the
graphene sheet is fixed at 0.25 A to induce out-of-plane
displacements in the graphene sheet of similar magnitude as
the in-plane displacements over the entire range of applied
external strain. By doing so, we obtain both maximum in-plane
forces Fy , and out-of-plane forces F, on the graphene sheet
that are typically of the order of several meV/ A (1 meV / A=
1.6 pN). This is illustrated in Fig. 2.

The effect of thermal fluctuations is modeled through a
Nosé-Hoover thermostat [67] with the temperature set to
300 K. To accommodate the effect of thermal expansion the
lateral cell size was equilibrated in 4 ns molecular dynamics
(MD) runs at zero applied pressure and using the velocity-
Verlet integration scheme with 0.001 ps time steps. As the
obtained fluctuations in the atomic positions in the graphene
sheet are known to scale with the side length of the sheet [44],
simulations were performed for various side lengths/number of
carbon atoms in the cell to obtain the scaling relation between
the atomic displacements and side length L.
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For both the static Gaussian potential and the dynamic
thermal fluctuation simulations the external strain is applied
by rescaling the lateral simulation cell size. Specifically, we
consider the effect of uniaxial strain along the zigzag direction
(x direction, cf. Fig. 2) and along the armchair direction (y
direction, cf. Fig. 2), as well as the effect of equibiaxial strain (x
and y direction). In the uniaxial cases, the simulation cell size
was kept fixed in the respective other direction. The applied
strain is always varied from 0% to 0.5% in steps of 0.1% and
from 0.5% to 15% in steps of 0.5%.

The central outcome of the simulations for a given external
strain are the average atomic displacements and the relative
changes in bond length. Distinguishing the average in-plane
displacement dy,, the average out-of-plane displacement doop,
and the average total displacement dyy, these are defined as

N
(xi — xi,00%> + (i — yi.0)?
dip - Z \/ N )

i=1

N

lzi — ziol
doop = Y, ———=, e
i=1 N

d = i Vi = xi02 + i — yi.0)> + (@i — Zi,O)z’
i=1 N
where (x;,y;,z;) is the position of atom i at the applied
Gaussian potential (MM) or at 300 K (MD), (x; 0, ¥i.0,2i,0) is its
equilibrium position at 0 K without applied Gaussian potential,
and N is the total number of atoms in the simulation cell.

For the case of the static Gaussian potential, these displace-
ments are evaluated after relaxing the atomic positions under
the applied strain until residual forces fell below 0.5 meV//ok.
For the thermal fluctuations the displacements are obtained
from MD simulations. Starting from the relaxed zero-strain
geometry (see above), the system was first equilibrated under
the applied strain over 4 ns in the (NVT) ensemble. The
displacements are then obtained as time averages over 6 ns
(N V E) trajectories.

III. RESULTS

A. Effect of a static Gaussian potential

Figure 3 summarizes the obtained average displacements
under applied equibiaxial strain and Gaussian potentials of
strength £10 meV, £50 meV, and £90 meV. For all three po-
tential strengths and irrespective of whether the potential is at-
tractive or repulsive the average out-of-plane displacement doqp
decreases monotonically with increasing strain. As the Gaus-
sian potential and thus the force exerted on the graphene sheet
is constant, this indicates an increase in the out-of-plane bend-
ing stiffness. The average in-plane displacement d;, exhibits
exactly the opposite behavior, i.e., it increases with increasing
strain. This reflects the decrease of the Young’s modulus with
increasing strain that was discussed in Sec. II. Intriguingly,
the increase of djp is in all cases more than linear with strain.
The reason for this is that the decrease of Young’s modulus is
more than linear with the strain (not shown). If one assumes
a simple linear elastic model, in which the strong coupling
between the in-plane and out-of-plane deformation is ignored,
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FIG. 3. Calculated average displacements under the influence of
a static Gaussian potential. Shown as a function of applied equibiaxial
tensile strain are the total displacement dy,, (black curves), the in-plane
displacement dj, (red curves), and the out-of-plane displacement d,
(green curves). The upper panel corresponds to a strength of the
Gaussian potential of 10 meV, the middle panel to 50 meV, and the
lower panel to 90 meV. In all panels, solid curves correspond to a
repulsive potential and dotted curves to an attractive potential. The
arrows indicate the minimum in total displacement d,.

one finds the trivial result that the in-plane displacements
should be independent of the strain. As we see a large increase
in in-plane deformations, the difference between the in-plane
displacement at finite strain and the one at zero strain quantifies
how much the in-plane displacements are beyond linear elas-
ticity. In our case, the in-plane displacements are up to a factor
5 larger than those expected from the simple linear elastic
model. The opposite behavior of the average out-of-plane and
in-plane displacement has the consequence, that the average
total displacement dy, reaches a minimum for a certain amount
of strain (see arrow). The precise value for this amount depends
on the potential strength (as apparent from Fig. 3) and on the
potential width (not shown). The stronger and narrower the
potential, the higher the strain required to reach the minimum.
In fact, for a potential width of only once or twice the size of the
interatomic carbon-carbon bond, the minimum is always above
15% strain for the explored values of potential strength and
for the considered, fixed perpendicular distance between the
center of the potential and the graphene sheet. This is approx-
imately equal to the breaking strength of graphene [1,68,69]
and will, therefore, not be reachable in experiments.

Both the average in-plane and out-of-plane displacements
depend on the width and the strength of the potential. We
observe that the average out-of-plane displacements scale
linearly with the strength of the potential, which is explained
from the fact that the out-of-plane force scales linearly with
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FIG. 4. (a) Top view of the graphene sheet depicting the spatial
distribution of the atomic displacements under the influence of a
Gaussian potential and for equibiaxial tensile strain of 1% (left panels)
and 10% (right panels). Compared are the in-plane displacements
(upper panels) and the out-of-plane displacements (lower panels).
The Gaussian potential of strength 90 meV is centered in the middle
of the sheet and the discrete displacement data of the individual C
atoms in the sheet has been interpolated to a continuous color map
for easier visualization. (b) Relative change in carbon-carbon bond
length as a function of the distance to the center where the Gaussian
potential is applied. Shown are data for three tensile strain values of
1%, 5%, and 10%. The cyan line is a guide to the eye.

the strength of the potential. However, the out-of-plane force
is largely independent of the width of the potential, as the
distance to the graphene sheet is fixed to 0.25 A, which is
much smaller than the explored widths in the simulation.
Therefore, there is hardly any effect on the average out-of-
plane displacements when the width of the potential is changed
from one to four interatomic carbon-carbon bonds. The
average in-plane displacements, on the other hand, are highly
sensitive to both the width and the strength of the potential,
since the in-plane force depends on both of these parameters.

Apart from the average displacements it is also instructive
to analyze the spatial distribution of the individual atomic
displacements over the graphene sheet. Figure 4(a) compiles
corresponding data for two different equibiaxial strain values.
The overall increase (decrease) of the in-plane (out-of-plane)
displacements for the larger strain value (10%) is again clearly
visible. The two types of displacements exhibit qualitatively
different spatial distributions, as one would naturally expect
from the qualitatively different spatial distribution of the
in-plane and out-of-plane forces shown in Fig. 2(b). The
out-of-plane displacements are largest exactly at the center
of the sheet where the potential is applied and decay radially
outwards. In contrast, the in-plane displacement distribution
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has a ringlike form, i.e., maximum displacements are found at
some radial distance away from the source of the disturbance.
This distance, or in other words the size of the ring, increases
with the width of the potential, but is otherwise largely inde-
pendent of the strength of the potential and the applied strain.

The fact that the in-plane and out-of-plane displacements
differ in their spatial distributions, where out-of-plane
displacements are largest at the center of the potential while
in-plane displacements exhibit a ringlike form, directly
translates to the carbon-carbon bond lengths within the sheet.
We quantify this via the nearest neighbor vector rj and
the relative change in bond length r{fl between neighboring
carbon atoms i and j:

rij = (Xj — X;, ¥j — Yis 2j — Zi)s

el Tl — Ixijol
ry=

2
Irij0l

Here [rjj 0| is determined at 0 K without applied Gaussian
potential. Figure 4(b) shows the relative change of this bond
length /! as a function of the distance to the center where
the potential is applied. At the smallest strain shown (1%) the
variations are dominated by the out-of-plane displacements
and largest changes in the bond lengths are correspondingly
obtained at the position of the potential. For larger strains, the
in-plane displacements gradually take over. Correspondingly,
maximum bond length changes are also observed at larger
distances from the applied potential. At a strain of 10% these
maximum values are found about 8 A away from the potential.
The resulting diameter of the nanometer-scale strain variation
of about 16 A is therewith almost an order of magnitude
larger than the width of the potential (4.26 A) causing it. This
is a consequence of the direct relation between the applied
external potential and the resulting deformation potential that
arises due to changes in bond lengths [70].

Even though the maximum bond changes are quite small
(less than 0.2%), it is important to realize that this still results
in a significant pseudomagnetic field B [6,27,36]:

— aA}’ 8Ax
=2 -=
o ®
Ay +iA, = i il exp Ko

Ly

in which r{f‘ and rjj o are defined in Eq. 2, A = (A,, A,) is the
pseudovector potential, 5 = 2.8 eV is the so-called hopping
parameter, B is the strained hopping energy modulation factor,
e is the electron charge, vr is the Fermi velocity, and K is
the high symmetry point at the edge of the Brillouin zone. For
1%, 5%, and 10% strain, we obtain maximum pseudomagnetic
fields of 60 mT, 110 mT, and 160 mT, respectively. These
numbers are much smaller than those reported in previous
theoretical investigations [65,66]. The reason for this is that the
previous work investigated a graphene structure with a much
larger ratio between the out-of-plane displacement (~ 2.5 nm)
and the width (~ 5 nm) of the nanometer-scale strain variation
and furthermore did not allow the atoms to relax in-plane. As
a consequence, the gradient of the relative bond length change
rl.‘;"l, which is the important quantity for the strength of the
pseudomagnetic field, is in our case much smaller, which thus
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FIG. 5. Calculated relative displacements with respect to the
atomic positions of the graphene sheet with a Gaussian potential of
90 meV at zero applied strain. The panels show from top to bottom the
x,y, and z component at 1% and 10% of applied strain. In agreement
with Figs. 3 and 4, the in-plane displacements increase with applied
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results in a much smaller pseudomagnetic field. Nevertheless,
such small pseudomagnetic fields do affect the uniformity of
the pseudomagnetic field in a graphene flake.

As Gaussian potentials [65,66] or bubbles with different
geometries [71] induce inhomogeneous strain distributions in
the graphene sheet with regions of compression, elongation
and unaffected bond length, it is imperative to consider the
change in displacements in the nanometer scale strain variation
itself and thus take the atomic positions of the graphene sheet
with the Gaussian potential at zero applied external strain as
reference position. Figure 5 compiles the result for a Gaussian
potential with a strength of 90 meV. The displacement in the
x and y direction of the atoms, that together form the in-plane
displacement, are enhanced when going from 1% to 10% of
applied tensile strain. This is fully consistent with the results
in Figs. 3 and 4. In Figs. 5(a) and 5(b), the outer red and blue
lobes indicate that the atoms are pushed radially outwards with
respect to the position where the Gaussian potential is applied.
In contrast, the inner lobes represent a region of compression
and is a result of the strong coupling between the in-plane and
out-of-plane displacement. The out-of-plane displacement z
keeps decreasing with applied tensile strain and reaches almost
the out-of-plane displacement of the reference configuration
at 10% applied strain.

Finally, we consider the change in local geometry of
the two-dimensional surface [72], which is characterized by
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FIG. 6. Calculated discrete Gaussian curvature Kp and discrete
mean curvature Hp for a Gaussian potential of 90 meV at 1% and
10% of applied strain. Both quantities decrease with at least one order
of magnitude when increasing the applied strain from 1% to 10%.

the discrete Gaussian curvature Kp and the discrete mean
curvature Hp. The former quantifies the local bending of the
surface, whereas the latter measures the relative orientation of
edges and normal vectors along a closed path. Both are zero
in the case of a flat surface. Figure 6 shows both quantities
for a Gaussian potential of 90 meV at an applied strain of
1% and 10%. Both, the discrete Gaussian curvature Kp and
discrete mean curvature Hp show that the graphene becomes
flatter with increasing strain, as both quantities decrease at least
one order of magnitude. This is consistent with the observed
decrease in out-of-plane displacements.

In the simulations with uniaxial strain, both along the zigzag
and the armchair direction, we qualitatively obtain equivalent
findings as those just summarized for the equibiaxial strain
case. This is visible in the average displacements compiled
in Fig. 7(a). Also here, we find the decrease (increase) of
the average out-of-plane (in-plane) displacements with strain.
However, since the ratio of the out-of-plane to in-plane
displacements is much larger for uniaxial strain, a minimum in
the total average displacement is not found (within the range
of strain values below the breaking point of graphene) for
the investigated parameters of the Gaussian potential. The
breaking of the graphene sheet can be observed as a sudden
rise in the in-plane displacements at a strain around 13% along
the armchair direction in Fig. 7(a).

Another important difference between equibiaxial and
uniaxial strain is that the lower symmetry of the uniaxial strain
leads to an anisotropy in the underlying spatial distributions,
which are summarized in Fig. 7(b). For both straining direc-
tions it is seen that the spatial distributions of the in-plane and
out-of-plane displacements are elongated along the direction
of the applied strain. Considering the range of the observed
displacements, it is obvious that the displacement of the
atoms close to the center of the potential affects a number
of neighbor atoms extending far beyond nearest neighbors
and even outside of the area of the graphene sheet where the
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FIG. 7. (a) Calculated average displacements under the influence
of a static Gaussian potential of strength 90 meV. Shown as a
function of applied uniaxial tensile strain along the zigzag (left panel)
and armchair (right panel) direction are the total displacement diy
(black curves), the in-plane displacement dj, (red curves), and the
out-of-plane displacement d,, (green curves). In both panels, solid
curves correspond to a repulsive potential and dotted curves to an
attractive potential. (b) Top views of the graphene sheet depicting the
corresponding spatial distribution of the atomic displacements under
10% strain. Compared are the in-plane displacements (upper panels)
and the out-of-plane displacements (lower panels) for uniaxial strain
along the armchair (left panels) and zigzag (middle panels) direction,
as well as equibiaxial strain (right panels).

SowoohN=—on

COO—==NNWW

out-of-plane, 10%

0020 40 60 801000 20 40 60 801000 20 40 60 80 100
x [A] x [A] x[A]

potential has any appreciable strength. To explain the observed
spatial distributions of the displacements, we will assume
that the range of the displacements, for a given magnitude
of displacement of the central atoms, corresponds to a fixed
number of carbon atoms along any direction outwards from
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the center of the potential. Thus, the elongated carbon-carbon
bonds along the straining direction should result in a larger
range of the displacements. For the in-plane displacements,
where the central atoms experience a similar magnitude of
displacement in the uniaxial and equibiaxial case, it is indeed
seen that the range of the in-plane displacements along the
straining direction in both the armchair and zigzag case closely
matches the range observed along the corresponding straining
direction in

the equibiaxial case. For the out-of-plane displacements
it is seen that the magnitude of the displacements are much
larger in the uniaxial case, which indicates that the out-of-plane
bending stiffness is increased less for uniaxial strain than for
biaxial strain. As expected, the increased magnitude of the
displacements leads to an increased range of the displacements
both perpendicular to and along the straining direction. Thus,
in this case the range of the displacements perpendicular to the
straining direction is comparable to the equibiaxial case,

while the range of the displacements along the straining
direction are much larger than the equibiaxial case. Note
that as the out-of-plane bending is always perpendicular to
the straining direction, the out-of-plane bending stiffness is
identical for all atoms independently of the straining direction.
The in-plane stretching mode, however, is expected to soften
along the straining direction as a consequence of the decrease
of Young’s modulus with increasing strain. Thus, a part of
the observed increase in the in-plane displacements along the
straining direction could also be explained by such strain-
induced softening.

B. Effect of thermal fluctuations

We now proceed to the effect of thermal fluctuations as
determined by the MD simulations at 300 K. The left and
center panel in Fig. 8 show the time-averaged values of the
displacements obtained with Eq. (1) as a function of applied
strain for a side length L of 2.5 and 32 nm, respectively. In
both panels, we observe that the out-of-plane displacement dop
(green dots) decreases with increasing strain, whereas the in-
plane displacement dj, (red dots) increases. As a consequence,
the total displacement dy; (black dots) reaches a minimum for a
certain strain value. These results are thus in perfect agreement
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FIG. 8. Calculated time-average displacements as a function of strain from MD simulations at 300 K. Results are shown for a side length
L of 2.5 nm (left panel) and 32 nm (middle panel). In agreement with the MM simulations, d,, decreases with increasing strain, whereas dj;
increases. The right panel shows how the average out-of-plane displacement scales with the side length L for different values of strain: 0%
(black), 0.5% (red), 1% (green), 3% (blue), 5% (cyan), 10% (magenta). The slope of the fitted lines yields the critical exponent of membrane

theory, see text.
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with the results of the MM simulations we discussed before.
Overall, the results of our MM and MD simulations suggest
that the out-of-plane displacements d,, always decrease with
increasing strain and that in-plane variations always increase
with increasing strain. For this, it is not important what the
origin of the strain variation is.

2D crystals, such as graphene, were thought to be thermody-
namically unstable due to their extremely small thickness [73].
In particular, the ratio between its effective thickness, which is
defined as the average out-of-plane fluctuations, and the side
length of a rectangular 2D crystal L, diverges if L — oo.
Therefore, it was a big surprise that suspended graphene
devices could be made and were stable at room temperature.
The reason why graphene is stable is the strong coupling
between its bending and stretching modes [74]. This coupling
is well described in membrane theory by a so-called critical
exponent & [75-77]. We determine the dependence of this
critical exponent on the applied strain, by determining the
average out-of-plane displacement dop, as a function of the
side length L for different values of strain, cf. Fig. 8.
The resulting values are compiled in Table 1. The exponent &
of 0.64 at zero strain is in good agreement with analytical work
done on the statistical mechanics of flexible membranes [78],
self-consistent screening approximation [74,79], and MD
simulations reported in literature [53,80], which give an
exponent of 0.58. For higher strain values, the critical exponent
decreases and already reaches & = 0.25 at 0.5% of strain. This
result indicates that even a small amount of strain stabilizes
graphene (¢ < 0.5), e.g., it remains flat in the sense that the
average out-of-plane displacement remains much smaller than
the side length L even if L — oo.

IV. SUMMARY AND CONCLUSIONS

We presented a molecular modeling study analyzing the
effect of externally applied tensile strain on nanometer-scale
strain variations of graphene. As source for such nanometer-
scale strain variations we considered thermal fluctuations and
a static Gaussian potential to model lattice imperfections in
an underlying substrate, as the exact physical origins of these
nanometer-scale strain variations are hard to capture. For both
sources and for both uniaxial and equibiaxial strain the central
outcome of our simulations is a decrease of the out-of-plane
atomic displacements and a surprising increase of the in-plane
atomic displacements with increasing strain. Details of both
variations are beyond the expectations of linear elasticity
theory, and reflect a strong increase of the bending rigidity
and the known decrease of graphene’s Young’s modulus with
strain, respectively. In conjunction both trends lead generally
to a nonmonotonic change in the total average displacement
with strain. This displacement first drops with applied strain
and then starts to rise again.
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TABLE I. Critical exponent £ and its error as a function of the
applied strain. The exponent & at 0% strain is 0.64, which is in perfect
agreement with literature [53,74,78-80].

strain [%)] & error [%]
0 0.64 10
0.5 0.25 8
1 0.23 14
3 0.16 18
5 0.18 18
10 0.14 19

This finding suggests an intriguing opportunity to further
investigate the influence of nanometer-scale strain variations
as the major mobility limitation to graphene. If so, then the
mobility of suspended graphene should initially increase with
applied tensile strain, only to decrease again after a critical
amount of strain. In contrast, we expect the confining potential
of sandwich structures of the type hBN/graphene/hBN to
largely suppress out-of-plane displacements. Leaving only
in-plain strain variations, the mobility should in this case
consistently be reduced upon application of tensile strain. The
critical role and variation of the in-plane displacements could
thereby be further validated through (tip-enhanced) Raman
spectroscopy [81-83]. Both the Raman active G-mode and
2D-mode are in-plane modes and are therefore expected to be
sensitive to in-plane strain variations. Assuming the width of
these modes to reflect the amount or strength of nanometer-
scale strain variations, our simulations suggest an increase of
this width with increasing tensile strain. The known splitting
of the G-mode in the case of uniaxial strain [84-86] could
thereby represent a complication. However, such a splitting
has not been observed for the 2D-mode and does also not
occur for the G-mode in the case of equibiaxial strain [§7-90].
As such, externally applied strain appears as a highly suitable
experimental knob [91-93] to further understand the role of
nanometer-scale strain variations in determining the material’s
properties of high-quality graphene.

The presented insights may be also highly relevant for other
two-dimensional crystals with nonlinear Young’s modulus. As
these materials have an unique electromechanical coupling
analogous to graphene, a detailed understanding of this inter-
play is crucial for future applications of these two-dimensional
crystals as well.
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