000828744 001__ 828744
000828744 005__ 20240712113114.0
000828744 0247_ $$2doi$$a10.1016/j.solidstatesciences.2017.03.005
000828744 0247_ $$2ISSN$$a1293-2558
000828744 0247_ $$2ISSN$$a1873-3085
000828744 0247_ $$2WOS$$aWOS:000401049200006
000828744 037__ $$aFZJ-2017-02610
000828744 041__ $$aEnglish
000828744 082__ $$a550
000828744 1001_ $$0P:(DE-Juel1)158083$$aGuin, M.$$b0
000828744 245__ $$aInvestigation of crystal structure and ionic transport in a scandium-based NASICON material by neutron powder diffraction
000828744 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2017
000828744 3367_ $$2DRIVER$$aarticle
000828744 3367_ $$2DataCite$$aOutput Types/Journal article
000828744 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1491805295_30238
000828744 3367_ $$2BibTeX$$aARTICLE
000828744 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000828744 3367_ $$00$$2EndNote$$aJournal Article
000828744 520__ $$aA study of the series Na3+xSc2SixP3-xO12 (0 < x < 0.8) revealed very high ionic conductivity values at room temperature. The structural investigation of the substitutional disorder and position of the very mobile Na+ ions in the crystal structure is the key to understanding the structure-property-chemical bonding relationships. Therefore neutron powder diffraction was carried out at 300 and 100 K on Na3.4Sc2Si0.4P2.6O12 to refine the structural parameters and to elucidate the Na+ distribution in the crystal structure.The refinement of the structure revealed that two phases are present, one rhombohedral Si-rich phase and one monoclinic Na3Sc2P3O12 phase. The ratio of the two phases is 1:1 and they possess similar lattice parameters. The hopping distances of the Na+ ions and the size of the bottleneck for Na+ conduction were calculated and explained the high conductivity of the sample.
000828744 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000828744 588__ $$aDataset connected to CrossRef
000828744 7001_ $$0P:(DE-Juel1)156509$$aDashjav, E.$$b1$$eCorresponding author
000828744 7001_ $$00000-0002-8867-8291$$aKumar, C. M. N.$$b2
000828744 7001_ $$0P:(DE-Juel1)129667$$aTietz, F.$$b3
000828744 7001_ $$0P:(DE-Juel1)161591$$aGuillon, O.$$b4
000828744 773__ $$0PERI:(DE-600)2035101-X$$a10.1016/j.solidstatesciences.2017.03.005$$gVol. 67, p. 30 - 36$$p30 - 36$$tSolid state sciences$$v67$$x1293-2558$$y2017
000828744 8564_ $$uhttps://juser.fz-juelich.de/record/828744/files/1-s2.0-S1293255816307282-main.pdf$$yRestricted
000828744 8564_ $$uhttps://juser.fz-juelich.de/record/828744/files/1-s2.0-S1293255816307282-main.gif?subformat=icon$$xicon$$yRestricted
000828744 8564_ $$uhttps://juser.fz-juelich.de/record/828744/files/1-s2.0-S1293255816307282-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000828744 8564_ $$uhttps://juser.fz-juelich.de/record/828744/files/1-s2.0-S1293255816307282-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000828744 8564_ $$uhttps://juser.fz-juelich.de/record/828744/files/1-s2.0-S1293255816307282-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000828744 8564_ $$uhttps://juser.fz-juelich.de/record/828744/files/1-s2.0-S1293255816307282-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000828744 8767_ $$8W1382006$$92017-03-16$$d2017-04-05$$eColour charges$$jZahlung erfolgt
000828744 909CO $$ooai:juser.fz-juelich.de:828744$$popenCost$$pOpenAPC$$pVDB
000828744 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158083$$aForschungszentrum Jülich$$b0$$kFZJ
000828744 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156509$$aForschungszentrum Jülich$$b1$$kFZJ
000828744 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129667$$aForschungszentrum Jülich$$b3$$kFZJ
000828744 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich$$b4$$kFZJ
000828744 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000828744 9141_ $$y2017
000828744 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSOLID STATE SCI : 2015
000828744 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000828744 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000828744 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000828744 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000828744 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000828744 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000828744 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000828744 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000828744 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000828744 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000828744 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x1
000828744 9201_ $$0I:(DE-82)080011_20140620$$kJARA-ENERGY$$lJARA-ENERGY$$x2
000828744 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x3
000828744 980__ $$ajournal
000828744 980__ $$aVDB
000828744 980__ $$aI:(DE-Juel1)IEK-1-20101013
000828744 980__ $$aI:(DE-Juel1)IEK-12-20141217
000828744 980__ $$aI:(DE-82)080011_20140620
000828744 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000828744 980__ $$aUNRESTRICTED
000828744 980__ $$aAPC
000828744 981__ $$aI:(DE-Juel1)IMD-4-20141217
000828744 981__ $$aI:(DE-Juel1)IMD-2-20101013