001     828744
005     20240712113114.0
024 7 _ |a 10.1016/j.solidstatesciences.2017.03.005
|2 doi
024 7 _ |a 1293-2558
|2 ISSN
024 7 _ |a 1873-3085
|2 ISSN
024 7 _ |a WOS:000401049200006
|2 WOS
037 _ _ |a FZJ-2017-02610
041 _ _ |a English
082 _ _ |a 550
100 1 _ |a Guin, M.
|0 P:(DE-Juel1)158083
|b 0
245 _ _ |a Investigation of crystal structure and ionic transport in a scandium-based NASICON material by neutron powder diffraction
260 _ _ |a Amsterdam [u.a.]
|c 2017
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1491805295_30238
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a A study of the series Na3+xSc2SixP3-xO12 (0 < x < 0.8) revealed very high ionic conductivity values at room temperature. The structural investigation of the substitutional disorder and position of the very mobile Na+ ions in the crystal structure is the key to understanding the structure-property-chemical bonding relationships. Therefore neutron powder diffraction was carried out at 300 and 100 K on Na3.4Sc2Si0.4P2.6O12 to refine the structural parameters and to elucidate the Na+ distribution in the crystal structure.The refinement of the structure revealed that two phases are present, one rhombohedral Si-rich phase and one monoclinic Na3Sc2P3O12 phase. The ratio of the two phases is 1:1 and they possess similar lattice parameters. The hopping distances of the Na+ ions and the size of the bottleneck for Na+ conduction were calculated and explained the high conductivity of the sample.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Dashjav, E.
|0 P:(DE-Juel1)156509
|b 1
|e Corresponding author
700 1 _ |a Kumar, C. M. N.
|0 0000-0002-8867-8291
|b 2
700 1 _ |a Tietz, F.
|0 P:(DE-Juel1)129667
|b 3
700 1 _ |a Guillon, O.
|0 P:(DE-Juel1)161591
|b 4
773 _ _ |a 10.1016/j.solidstatesciences.2017.03.005
|g Vol. 67, p. 30 - 36
|0 PERI:(DE-600)2035101-X
|p 30 - 36
|t Solid state sciences
|v 67
|y 2017
|x 1293-2558
856 4 _ |u https://juser.fz-juelich.de/record/828744/files/1-s2.0-S1293255816307282-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828744/files/1-s2.0-S1293255816307282-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828744/files/1-s2.0-S1293255816307282-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828744/files/1-s2.0-S1293255816307282-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828744/files/1-s2.0-S1293255816307282-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828744/files/1-s2.0-S1293255816307282-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:828744
|p VDB
|p OpenAPC
|p openCost
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)158083
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)156509
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129667
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)161591
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SOLID STATE SCI : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 1
920 1 _ |0 I:(DE-82)080011_20140620
|k JARA-ENERGY
|l JARA-ENERGY
|x 2
920 1 _ |0 I:(DE-Juel1)JCNS-2-20110106
|k JCNS-2
|l Streumethoden
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
980 _ _ |a I:(DE-82)080011_20140620
980 _ _ |a I:(DE-Juel1)JCNS-2-20110106
980 _ _ |a UNRESTRICTED
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IMD-4-20141217
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21