000828746 001__ 828746
000828746 005__ 20250129092408.0
000828746 0247_ $$2doi$$a10.1038/nphys4076
000828746 0247_ $$2ISSN$$a1745-2473
000828746 0247_ $$2ISSN$$a1745-2481
000828746 0247_ $$2WOS$$aWOS:000402604200017
000828746 0247_ $$2altmetric$$aaltmetric:18170195
000828746 037__ $$aFZJ-2017-02612
000828746 041__ $$aEnglish
000828746 082__ $$a530
000828746 1001_ $$0P:(DE-Juel1)162111$$aSüfke, Martin$$b0$$eCorresponding author
000828746 245__ $$aPara-hydrogen raser delivers sub-millihertz resolution in nuclear magnetic resonance
000828746 260__ $$aBasingstoke$$bNature Publishing Group$$c2017
000828746 3367_ $$2DRIVER$$aarticle
000828746 3367_ $$2DataCite$$aOutput Types/Journal article
000828746 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1496748425_28739
000828746 3367_ $$2BibTeX$$aARTICLE
000828746 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000828746 3367_ $$00$$2EndNote$$aJournal Article
000828746 520__ $$aThe precision of nuclear magnetic resonance spectroscopy1 (NMR) is limited by the signal-to-noise ratio, the measurement time Tm and the linewidth Δν = 1/(πT2). Overcoming the T 2 limit is possible if the nuclear spins of a molecule emit continuous radio waves. Lasers and masers are self-organized systems which emit coherent radiation in the optical and micro-wave regime. Both are based on creating a population inversion of specific energy states. Here we show continuous oscillations of proton spins of organic molecules in the radiofrequency regime (raser5). We achieve this by coupling a population inversion created through signal amplification by reversible exchange (SABRE) to a high-quality-factor resonator. For the case of 15N labelled molecules, we observe multi-mode raser activity, which reports different spin quantum states. The corresponding 1H-15N J-coupled NMR spectra exhibit unprecedented sub-millihertz resolution and can be explained assuming two-spin ordered quantum states. Our findings demonstrate a substantial improvement in the frequency resolution of NMR.
000828746 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000828746 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000828746 588__ $$aDataset connected to CrossRef
000828746 7001_ $$0P:(DE-HGF)0$$aLehmkuhl, Sören$$b1
000828746 7001_ $$0P:(DE-HGF)0$$aLiebisch, Alexander$$b2
000828746 7001_ $$0P:(DE-HGF)0$$aBlümich, Bernhard$$b3
000828746 7001_ $$0P:(DE-Juel1)133861$$aAppelt, Stephan$$b4
000828746 773__ $$0PERI:(DE-600)2206346-8$$a10.1038/nphys4076$$p568–572$$tNature physics$$v13$$x1745-2481$$y2017
000828746 8564_ $$uhttps://juser.fz-juelich.de/record/828746/files/nphys4076.pdf$$yRestricted
000828746 8564_ $$uhttps://juser.fz-juelich.de/record/828746/files/nphys4076.gif?subformat=icon$$xicon$$yRestricted
000828746 8564_ $$uhttps://juser.fz-juelich.de/record/828746/files/nphys4076.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000828746 8564_ $$uhttps://juser.fz-juelich.de/record/828746/files/nphys4076.jpg?subformat=icon-180$$xicon-180$$yRestricted
000828746 8564_ $$uhttps://juser.fz-juelich.de/record/828746/files/nphys4076.jpg?subformat=icon-640$$xicon-640$$yRestricted
000828746 8564_ $$uhttps://juser.fz-juelich.de/record/828746/files/nphys4076.pdf?subformat=pdfa$$xpdfa$$yRestricted
000828746 8767_ $$82676062458$$92017-08-03$$d2017-08-03$$eColour charges$$jZahlung erfolgt$$pNPHYS-2016-08-02078
000828746 909CO $$ooai:juser.fz-juelich.de:828746$$popenCost$$pOpenAPC$$pVDB
000828746 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133861$$aForschungszentrum Jülich$$b4$$kFZJ
000828746 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133861$$aForschungszentrum Jülich$$b4$$kFZJ
000828746 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000828746 9141_ $$y2017
000828746 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000828746 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT PHYS : 2015
000828746 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000828746 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000828746 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000828746 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000828746 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000828746 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000828746 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000828746 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000828746 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000828746 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bNAT PHYS : 2015
000828746 9201_ $$0I:(DE-Juel1)ZEA-2-20090406$$kZEA-2$$lZentralinstitut für Elektronik$$x0
000828746 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x1
000828746 9801_ $$aAPC
000828746 980__ $$ajournal
000828746 980__ $$aVDB
000828746 980__ $$aI:(DE-Juel1)ZEA-2-20090406
000828746 980__ $$aI:(DE-Juel1)IEK-9-20110218
000828746 980__ $$aAPC
000828746 980__ $$aUNRESTRICTED
000828746 981__ $$aI:(DE-Juel1)PGI-4-20110106
000828746 981__ $$aI:(DE-Juel1)IET-1-20110218