000828747 001__ 828747
000828747 005__ 20240711101525.0
000828747 0247_ $$2doi$$a10.1149/2.1261704jes
000828747 0247_ $$2ISSN$$a0013-4651
000828747 0247_ $$2ISSN$$a0096-4743
000828747 0247_ $$2ISSN$$a0096-4786
000828747 0247_ $$2ISSN$$a1945-7111
000828747 0247_ $$2Handle$$a2128/14748
000828747 0247_ $$2WOS$$aWOS:000400958600148
000828747 037__ $$aFZJ-2017-02613
000828747 041__ $$aEnglish
000828747 082__ $$a540
000828747 1001_ $$0P:(DE-Juel1)129878$$aKulikovsky, Andrei$$b0$$eCorresponding author$$ufzj
000828747 245__ $$aCan We Quantify Oxygen Transport in the Nafion Film Covering an Agglomerate of Pt/C Particles?
000828747 260__ $$aPennington, NJ$$bElectrochemical Soc.$$c2017
000828747 3367_ $$2DRIVER$$aarticle
000828747 3367_ $$2DataCite$$aOutput Types/Journal article
000828747 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1498468319_10857
000828747 3367_ $$2BibTeX$$aARTICLE
000828747 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000828747 3367_ $$00$$2EndNote$$aJournal Article
000828747 520__ $$aWe report a model of the cathode catalyst layer (CCL) impedance, which includes impedances due to oxygen transport in the Nafion film covering Pt/C agglomerates, and due to oxygen transport through the CCL depth. In the case of small cell current density, analytical solutions for the CCL impedance Zccl are derived; for larger currents, we analyze numerical solution for Zccl. The characteristic frequencies of the oxygen transport through the Nafion film and through the CCL depth are close to each other, and the contribution of the Nafion film impedance ZN to Zccl is small up to the current densities ≃ 100 mA cm− 2. This makes it difficult reliable determination of ZN from experimental spectra of a standard 10 μm–thick CCL. However, with the decrease in the CCL thickness, the relative contribution of ZN to Zccl increases. It gives us a chance to determine ZN by fitting the models of this work to measured spectra of a low–loaded MEA with a thin CCL. An example of fitting the model to a synthetic numerical impedance is given.
000828747 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000828747 588__ $$aDataset connected to CrossRef
000828747 773__ $$0PERI:(DE-600)2002179-3$$a10.1149/2.1261704jes$$gVol. 164, no. 4, p. F379 - F386$$n4$$pF379 - F386$$tJournal of the Electrochemical Society$$v164$$x1945-7111$$y2017
000828747 8564_ $$uhttps://juser.fz-juelich.de/record/828747/files/J.%20Electrochem.%20Soc.-2017-Kulikovsky-F379-86.pdf$$yOpenAccess
000828747 8564_ $$uhttps://juser.fz-juelich.de/record/828747/files/J.%20Electrochem.%20Soc.-2017-Kulikovsky-F379-86.gif?subformat=icon$$xicon$$yOpenAccess
000828747 8564_ $$uhttps://juser.fz-juelich.de/record/828747/files/J.%20Electrochem.%20Soc.-2017-Kulikovsky-F379-86.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000828747 8564_ $$uhttps://juser.fz-juelich.de/record/828747/files/J.%20Electrochem.%20Soc.-2017-Kulikovsky-F379-86.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000828747 8564_ $$uhttps://juser.fz-juelich.de/record/828747/files/J.%20Electrochem.%20Soc.-2017-Kulikovsky-F379-86.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000828747 8564_ $$uhttps://juser.fz-juelich.de/record/828747/files/J.%20Electrochem.%20Soc.-2017-Kulikovsky-F379-86.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000828747 909CO $$ooai:juser.fz-juelich.de:828747$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000828747 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129878$$aForschungszentrum Jülich$$b0$$kFZJ
000828747 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000828747 9141_ $$y2017
000828747 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000828747 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000828747 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000828747 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ ELECTROCHEM SOC : 2015
000828747 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000828747 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000828747 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000828747 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000828747 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000828747 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000828747 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000828747 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000828747 920__ $$lyes
000828747 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lElektrochemische Verfahrenstechnik$$x0
000828747 9801_ $$aFullTexts
000828747 980__ $$ajournal
000828747 980__ $$aVDB
000828747 980__ $$aUNRESTRICTED
000828747 980__ $$aI:(DE-Juel1)IEK-3-20101013
000828747 981__ $$aI:(DE-Juel1)ICE-2-20101013