000828764 001__ 828764
000828764 005__ 20240619091746.0
000828764 0247_ $$2Handle$$a2128/22133
000828764 0247_ $$2ISSN$$a1866-1807
000828764 020__ $$a978-3-95806-202-3
000828764 037__ $$aFZJ-2017-02620
000828764 1001_ $$0P:(DE-Juel1)130548$$aBlügel, Stefan$$b0$$eEditor$$gmale$$ufzj
000828764 1112_ $$aLecture Notes of the 48th IFF Spring School 2017$$cJülich$$d2017-03-27 - 2017-04-07$$wGermany
000828764 245__ $$aTopological Matter - Topological Insulators, Skyrmions and Majoranas
000828764 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2017
000828764 300__ $$agetr. Zählung
000828764 3367_ $$2BibTeX$$aBOOK
000828764 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$bbook$$mbook$$s1491372010_13272
000828764 3367_ $$0PUB:(DE-HGF)26$$2PUB:(DE-HGF)$$aProceedings$$mproc
000828764 3367_ $$2DataCite$$aOutput Types/Book
000828764 3367_ $$2ORCID$$aBOOK
000828764 3367_ $$01$$2EndNote$$aBook
000828764 3367_ $$2DRIVER$$abook
000828764 4900_ $$aSchriften des Forschungszentrums Jülich. Reihe Schlüsseltechnologien / Key Technologies$$v139
000828764 520__ $$aCondensed matter physics is currently undergoing a revolution through the introduction of concepts arising from topology that are used to characterize physical states, fields and properties from a completely different perspective. With the introduction of topology, the perspective is changed from describing complex systems in terms of local order parameters to a characterization by global quantities, which are measured nonlocally and which endow the systems with a global stability to perturbations. Prominent examples are topological insulators, skyrmions and Majorana fermions. Since topology translates into quantization, and topological order to entanglement, this ongoing revolution has impact on fields like mathematics, materials science, nanoelectronics and quantum information resulting in new device concepts enabling computations without dissipation of energy or enabling the possibility of realizing platforms for topological quantum computation, and ultimately reaching out into applications. Thus, these new exciting scientific developments and their applications are closely related to the grand challenges in information and communication technology and energy saving. Topology is the branch of mathematics that deals with properties of spaces that are invariant under smooth deformations. It provides newly appreciated mathematical tools in condensed matter physics that are currently revolutionizing the field of quantum matter and materials. Topology dictates that if two different Hamiltonians can be smoothly deformed into each other they give rise to many common physical properties and their states are homotopy invariant. Thus, topological invariance, which is often protected by discrete symmetries, provides some robustness that translates into the quantization of properties; such a robust quantization motivates the search and discovery of new topological matter. So far, the mainstream of modern topological condensed matter physics relies on two profoundly different scenarios: the emergence of the complex topology either in real space, as manifested e.g. in non-trivial magnetic structures or in momentum space, finding its realization in such materials as topological and Chern insulators. The latter renowned class of solids attracted considerable attention in recent years owing to its fascinating properties of spin-momentum locking, emergence of topologically protected surface/edge states governed by Dirac physics, as well as the quantization of Hall conductance and the discovery of the quantum spin Hall effect. Historically, the discovery of topological insulators gave rise to the discovery of a whole plethora of topologically non-trivial materials such asWeyl semimetals or topological superconductors, relevant in the context of the realization of Majorana fermions and topological quantum computation. [...]
000828764 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000828764 7001_ $$0P:(DE-Juel1)130848$$aMokrousov, Yuriy$$b1$$eEditor$$gmale$$ufzj
000828764 7001_ $$0P:(DE-Juel1)128634$$aSchäpers, Thomas$$b2$$gmale$$ufzj
000828764 7001_ $$0P:(DE-HGF)0$$aAndo, Yoichi$$b3$$eEditor$$gmale
000828764 8564_ $$uhttps://juser.fz-juelich.de/record/828764/files/Schluesseltech_139.pdf$$yOpenAccess
000828764 909CO $$ooai:juser.fz-juelich.de:828764$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000828764 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000828764 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000828764 9141_ $$y2017
000828764 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich$$b0$$kFZJ
000828764 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130848$$aForschungszentrum Jülich$$b1$$kFZJ
000828764 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128634$$aForschungszentrum Jülich$$b2$$kFZJ
000828764 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000828764 920__ $$lyes
000828764 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000828764 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000828764 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x2
000828764 9201_ $$0I:(DE-Juel1)ICS-1-20110106$$kICS-1$$lNeutronenstreuung$$x3
000828764 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kNeutronenstreuung ; JCNS-1$$lNeutronenstreuung$$x4
000828764 9801_ $$aFullTexts
000828764 980__ $$abook
000828764 980__ $$aVDB
000828764 980__ $$aUNRESTRICTED
000828764 980__ $$aproc
000828764 980__ $$aI:(DE-Juel1)IAS-1-20090406
000828764 980__ $$aI:(DE-Juel1)PGI-1-20110106
000828764 980__ $$aI:(DE-Juel1)PGI-9-20110106
000828764 980__ $$aI:(DE-Juel1)ICS-1-20110106
000828764 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000828764 981__ $$aI:(DE-Juel1)IBI-8-20200312
000828764 981__ $$aI:(DE-Juel1)JCNS-1-20110106