001     828812
005     20220930130120.0
024 7 _ |a 10.3389/fpls.2017.00447
|2 doi
024 7 _ |a 2128/14163
|2 Handle
024 7 _ |a WOS:000398172200001
|2 WOS
024 7 _ |a altmetric:18451169
|2 altmetric
024 7 _ |a pmid:28421089
|2 pmid
037 _ _ |a FZJ-2017-02668
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Lobet, Guillaume
|0 P:(DE-Juel1)171180
|b 0
|e Corresponding author
245 _ _ |a Using a Structural Root System Model to Evaluate and Improve the Accuracy of Root Image Analysis Pipelines
260 _ _ |a Lausanne
|c 2017
|b Frontiers Media88991
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1491804106_30232
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Root system analysis is a complex task, often performed with fully automated image analysis pipelines. However, the outcome is rarely verified by ground-truth data, which might lead to underestimated biases. We have used a root model, ArchiSimple, to create a large and diverse library of ground-truth root system images (10,000). For each image, three levels of noise were created. This library was used to evaluate the accuracy and usefulness of several image descriptors classically used in root image analysis softwares. Our analysis highlighted that the accuracy of the different traits is strongly dependent on the quality of the images and the type, size, and complexity of the root systems analyzed. Our study also demonstrated that machine learning algorithms can be trained on a synthetic library to improve the estimation of several root system traits. Overall, our analysis is a call to caution when using automatic root image analysis tools. If a thorough calibration is not performed on the dataset of interest, unexpected errors might arise, especially for large and complex root images. To facilitate such calibration, both the image library and the different codes used in the study have been made available to the community.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Koevoets, Iko T.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Noll, Manuel
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Meyer, Patrick E.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Tocquin, Pierre
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Pagès, Loïc
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Périlleux, Claire
|0 P:(DE-HGF)0
|b 6
773 _ _ |a 10.3389/fpls.2017.00447
|g Vol. 8
|0 PERI:(DE-600)2711035-7
|p 447
|t Frontiers in Functional Plant Ecology
|v 8
|y 2017
|x 1664-462X
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/828812/files/fpls-08-00447.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/828812/files/fpls-08-00447.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/828812/files/fpls-08-00447.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/828812/files/fpls-08-00447.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/828812/files/fpls-08-00447.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/828812/files/fpls-08-00447.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:828812
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB:Earth_Environment
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)171180
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Peer Review unknown
|0 StatID:(DE-HGF)0040
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 1 _ |a FullTexts
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21