000828820 001__ 828820
000828820 005__ 20210129230155.0
000828820 0247_ $$2doi$$a10.1007/s10533-017-0306-0
000828820 0247_ $$2ISSN$$a0168-2563
000828820 0247_ $$2ISSN$$a1573-515X
000828820 0247_ $$2WOS$$aWOS:000396123500006
000828820 0247_ $$2altmetric$$aaltmetric:16490710
000828820 037__ $$aFZJ-2017-02674
000828820 082__ $$a540
000828820 1001_ $$0P:(DE-Juel1)165707$$aWei, Jing$$b0$$eCorresponding author
000828820 245__ $$aN$_{2}$O and NO$_{x}$ emissions by reactions of nitrite with soil organic matter of a Norway spruce forest
000828820 260__ $$aDordrecht [u.a.]$$bSpringer Science + Business Media B.V.$$c2017
000828820 3367_ $$2DRIVER$$aarticle
000828820 3367_ $$2DataCite$$aOutput Types/Journal article
000828820 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1491803979_30232
000828820 3367_ $$2BibTeX$$aARTICLE
000828820 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000828820 3367_ $$00$$2EndNote$$aJournal Article
000828820 520__ $$aNitrite (NO2−) as an important intermediate of the biological nitrogen cycle is particularly reactive in acidic soils and acts as a source of N2O and NOx (NO and NO2). However, abiotic and biotic pathways of NO2−-driven N2O and NOx production in forest soil and the role of soil organic matter (SOM) in these processes are still unclear. In this study, NO2− was applied to both unsterile and sterilized soil samples as well as to different SOM fractions from a Norway spruce forest. Biotic and abiotic N2O emission was measured with an infrared absorption analyzer and gas chromatography, while NOx emission was quantified with a chemiluminescence analyzer. Isotopic signatures of N2O (δ15Nbulk, δ18O, and 15N-N2O site preference) were analyzed with an isotope ratio mass spectrometer. After NO2− addition, a large amount of NOx was emitted immediately, while N2O emission occurred 15–60 min later and was much lower compared to NOx. Sterilization of soil decreased N2O emission significantly, but not NOx emission. The 15N site preference of N2O ranged from 7.98 to 11.58‰ for abiotic and 4.69–7.42‰ for biotic sources. The fulvic acid fraction contributed the most to abiotic N2O emission, while the fastest NO and N2O emission occurred after NO2−application to the humin fraction, followed by the humic acid fraction. These results are important for the future understanding of NOx and N2O sources, as well as the use of isotopic signatures for source-partitioning N2O emission from soil.
000828820 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000828820 588__ $$aDataset connected to CrossRef
000828820 7001_ $$0P:(DE-Juel1)129427$$aAmelung, Wulf$$b1$$ufzj
000828820 7001_ $$0P:(DE-HGF)0$$aLehndorff, Eva$$b2
000828820 7001_ $$0P:(DE-HGF)0$$aSchloter, Michael$$b3
000828820 7001_ $$0P:(DE-Juel1)129549$$aVereecken, Harry$$b4$$ufzj
000828820 7001_ $$0P:(DE-Juel1)142357$$aBrüggemann, Nicolas$$b5$$ufzj
000828820 773__ $$0PERI:(DE-600)1478541-9$$a10.1007/s10533-017-0306-0$$gVol. 132, no. 3, p. 325 - 342$$n3$$p325 - 342$$tBiogeochemistry$$v132$$x1573-515X$$y2017
000828820 8564_ $$uhttps://juser.fz-juelich.de/record/828820/files/art_10.1007_s10533-017-0306-0.pdf$$yRestricted
000828820 8564_ $$uhttps://juser.fz-juelich.de/record/828820/files/art_10.1007_s10533-017-0306-0.gif?subformat=icon$$xicon$$yRestricted
000828820 8564_ $$uhttps://juser.fz-juelich.de/record/828820/files/art_10.1007_s10533-017-0306-0.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000828820 8564_ $$uhttps://juser.fz-juelich.de/record/828820/files/art_10.1007_s10533-017-0306-0.jpg?subformat=icon-180$$xicon-180$$yRestricted
000828820 8564_ $$uhttps://juser.fz-juelich.de/record/828820/files/art_10.1007_s10533-017-0306-0.jpg?subformat=icon-640$$xicon-640$$yRestricted
000828820 8564_ $$uhttps://juser.fz-juelich.de/record/828820/files/art_10.1007_s10533-017-0306-0.pdf?subformat=pdfa$$xpdfa$$yRestricted
000828820 909CO $$ooai:juser.fz-juelich.de:828820$$pVDB:Earth_Environment$$pVDB
000828820 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165707$$aForschungszentrum Jülich$$b0$$kFZJ
000828820 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129427$$aForschungszentrum Jülich$$b1$$kFZJ
000828820 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich$$b4$$kFZJ
000828820 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142357$$aForschungszentrum Jülich$$b5$$kFZJ
000828820 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000828820 9141_ $$y2017
000828820 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000828820 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000828820 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBIOGEOCHEMISTRY : 2015
000828820 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000828820 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000828820 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000828820 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000828820 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000828820 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000828820 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000828820 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000828820 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000828820 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000828820 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000828820 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000828820 920__ $$lyes
000828820 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000828820 980__ $$ajournal
000828820 980__ $$aVDB
000828820 980__ $$aI:(DE-Juel1)IBG-3-20101118
000828820 980__ $$aUNRESTRICTED