001     828820
005     20210129230155.0
024 7 _ |a 10.1007/s10533-017-0306-0
|2 doi
024 7 _ |a 0168-2563
|2 ISSN
024 7 _ |a 1573-515X
|2 ISSN
024 7 _ |a WOS:000396123500006
|2 WOS
024 7 _ |a altmetric:16490710
|2 altmetric
037 _ _ |a FZJ-2017-02674
082 _ _ |a 540
100 1 _ |a Wei, Jing
|0 P:(DE-Juel1)165707
|b 0
|e Corresponding author
245 _ _ |a N$_{2}$O and NO$_{x}$ emissions by reactions of nitrite with soil organic matter of a Norway spruce forest
260 _ _ |a Dordrecht [u.a.]
|c 2017
|b Springer Science + Business Media B.V.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1491803979_30232
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Nitrite (NO2−) as an important intermediate of the biological nitrogen cycle is particularly reactive in acidic soils and acts as a source of N2O and NOx (NO and NO2). However, abiotic and biotic pathways of NO2−-driven N2O and NOx production in forest soil and the role of soil organic matter (SOM) in these processes are still unclear. In this study, NO2− was applied to both unsterile and sterilized soil samples as well as to different SOM fractions from a Norway spruce forest. Biotic and abiotic N2O emission was measured with an infrared absorption analyzer and gas chromatography, while NOx emission was quantified with a chemiluminescence analyzer. Isotopic signatures of N2O (δ15Nbulk, δ18O, and 15N-N2O site preference) were analyzed with an isotope ratio mass spectrometer. After NO2− addition, a large amount of NOx was emitted immediately, while N2O emission occurred 15–60 min later and was much lower compared to NOx. Sterilization of soil decreased N2O emission significantly, but not NOx emission. The 15N site preference of N2O ranged from 7.98 to 11.58‰ for abiotic and 4.69–7.42‰ for biotic sources. The fulvic acid fraction contributed the most to abiotic N2O emission, while the fastest NO and N2O emission occurred after NO2−application to the humin fraction, followed by the humic acid fraction. These results are important for the future understanding of NOx and N2O sources, as well as the use of isotopic signatures for source-partitioning N2O emission from soil.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Amelung, Wulf
|0 P:(DE-Juel1)129427
|b 1
|u fzj
700 1 _ |a Lehndorff, Eva
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Schloter, Michael
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Vereecken, Harry
|0 P:(DE-Juel1)129549
|b 4
|u fzj
700 1 _ |a Brüggemann, Nicolas
|0 P:(DE-Juel1)142357
|b 5
|u fzj
773 _ _ |a 10.1007/s10533-017-0306-0
|g Vol. 132, no. 3, p. 325 - 342
|0 PERI:(DE-600)1478541-9
|n 3
|p 325 - 342
|t Biogeochemistry
|v 132
|y 2017
|x 1573-515X
856 4 _ |u https://juser.fz-juelich.de/record/828820/files/art_10.1007_s10533-017-0306-0.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828820/files/art_10.1007_s10533-017-0306-0.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828820/files/art_10.1007_s10533-017-0306-0.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828820/files/art_10.1007_s10533-017-0306-0.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828820/files/art_10.1007_s10533-017-0306-0.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828820/files/art_10.1007_s10533-017-0306-0.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:828820
|p VDB
|p VDB:Earth_Environment
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)165707
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129427
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129549
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)142357
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2017
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BIOGEOCHEMISTRY : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21